Skip to main content
  • 2919 Accesses

Abstract

Generally, a vehicle’s longitudinal dynamics is mainly determined by its internal kinematical components:

  1. (1)

    engine, which is the source of power and convert chemical energy of the fuel to kinetic energy of a flywheel

  2. (2)

    driveline/transmission, which carries power from the engine to the wheels

  3. (3)

    The braking system, which can slow down or stop the car

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. U. Kiencke and L. Nielsen, Automotive Control Systems: for Engine, Driveline and Vehicle, Springer-Verlag, 2000.

    Google Scholar 

  2. T. Takeuchi, K.-G. Choi, and S. Kan, et. al, “Sensibility analysis of vibration transfer path and control of input force for reduction of acceleration and deceleration shock,” Mitsubishi Motors Technical Review, 2003.

    Google Scholar 

  3. B. Jakoby, M. Scherer, and M. Buskies, et. al, “An automotive engine oil viscosity sensor,” IEEE Sensors Journal, vol. 3, no. 5, pp. 562–568, 2003.

    Article  Google Scholar 

  4. H.-P. Schoner and P. Hille, “Automotive power electronics: new challenges for power electronic,” Proceedings of IEEE Annual Power Electronics Specialists Conference, vol. 1, pp. 6–11, 2000.

    Google Scholar 

  5. D. L. Harrington and J. A. Bolt, “Analysis and digital simulation of carburetor metering,” SAE#700082, 1970.

    Google Scholar 

  6. J. D. Dobner, “A mathematical engine model for development of dynamic engine control,” SAE#800054, 1980.

    Google Scholar 

  7. Y.-K. Chin and F. E. Coats, “Engine dynamics: time-based versus crank-angle based,” SAE#860412, 1986.

    Google Scholar 

  8. J. D. Powell, “A review of IC engine models for control system design,” Proceedings of World Congress on Automatic Control, vol. 3, 1987.

    Google Scholar 

  9. U. Kiencke, “A view of automotive control systems,” IEEE Control Systems Magazine, vol. 8, no. 4, pp. 11–19, 1988.

    Article  Google Scholar 

  10. J. B. Heywood, Internal Combustion Engine Fundamentals, New York: McGraw-Hill, 1988.

    Google Scholar 

  11. J. K. Hedrick and D. Cho, “A nonlinear controller design method for fuel-injected automotive engines,” ASME Journal of Engineering for Gas Turbines and Power, vol. 110, no. 3, pp. 313–320, 1988.

    Article  Google Scholar 

  12. E. Hendricks and S. C. Sorenson, “Mean value modelling of spark ignition engines,” SAE#900616, 1990.

    Google Scholar 

  13. P. R. Crossley and J. A. Cook, “A nonlinear engine model for drivetrain system development,” IEE Conference Publication 332, vol. 2, pp: 921–925, 1991.

    Google Scholar 

  14. J. J. Moskwa and J. K. Hedrick, “Modeling and validation of automotive engines for control algorithm development,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 114, no. 2, pp. 278–285, 1992.

    Article  Google Scholar 

  15. E. Hendricks, “Engine modelling for control applications: a critical survey,” Meccanica, vol. 32, pp. 387–396, 1997.

    Article  MATH  Google Scholar 

  16. H. Zhao, P. Calnan, and N. Ladommatos, et. al, “Development of an engine simulation program and its application to stratified charge SI engines,” International Journal of Vehicle Design, vol. 22, no. 3/4, pp. 159–194,2002.

    Article  Google Scholar 

  17. H. Javaherian, D. Liu, and Y. Zhang, et. al, “Adaptive critic learning techniques for automotive engine control,” Proceedings of American Control Conference, vol. 5, pp. 4066–4071, 2004.

    Google Scholar 

  18. S. R. Fozo and C. F. Aquino, “Transient A/F characteristics for cold operation of a 1.6 liter engine with sequential fuel injection,” SAE#880691, 1991.

    Google Scholar 

  19. G. Almkvist and S. Eriksson, “An analysis of air to fuel ratio response in a multi point fuel injected engine under transient conditions,” SAE#932753, 1993.

    Google Scholar 

  20. C.-F. Chang, N. P. Fekete, and J. D. Powell, “Engine air-fuel ratio control using an event based observer,” SAE#930766, 1993.

    Google Scholar 

  21. C.-F. Chang, N. P. Fekete, and A. Amstutz, et. al, “Air-Fuel ratio control in Spark-Ignition engines using estimation theory,” IEEE Transaction on Control Systems Technology, vol. 3, no. 1, pp. 22–31, 1995.

    Article  Google Scholar 

  22. G. J. Vachtsevanos, S. S. Farinwata, and D. K. Pirovolou, “Fuzzy logic control of an automotive engine,” IEEE Control Systems Magazine, vol. 13, no. 3, pp. 62–68, 1993.

    Article  Google Scholar 

  23. H. Shiraishi, S. L. Ipri, and D. D. Cho, “CMAC neural network controller for fuel-injection systems,” IEEE Transactions on Control System Technology, vol. 3, no. 1, pp. 32–38, 1995.

    Article  Google Scholar 

  24. D. G. Coop, K. J. Burnham, and F. P. Lockett, “Fuzzy modeling techniques applied to an air/fuel ratio control system,” Proceedings of IEE Colloquium on Industrial Automation and Control: Applications in the Automotive Industry, pp: 3/1–3/7, 1998.

    Google Scholar 

  25. J. D. Powell, N. P. Fekete, and C.-F. Chang, “Observer-based air-fuel ratio control,” IEEE Control Systems Magazine, vol. 18, no. 5, pp. 72–83, 1998.

    Article  Google Scholar 

  26. J. K. Pieper and R. Mehrotra, “Air/fuel ratio control using sliding mode methods,” Proceedings of American Control Conference, vol. 2, pp. 1027–1031, 1999.

    Google Scholar 

  27. C. Alippi, C. de Russis, and V. Piuri, “A neural-network based control solution to air-fuel ratio control for automotive fuel-injection systems,” IEEE Transaction on Systems, Man and Cybernetics, Part C, vol. 33, no. 2, pp. 259–268, 2003.

    Article  Google Scholar 

  28. V. I. Utkin, “Variable structure systems with Sliding modes,” IEEE Transactions on Automatic Control, vol. AC-22, no. 2, pp. 212–222, 1997.

    MathSciNet  Google Scholar 

  29. C. F. Aquino, “Transient A/F control characteristics of the 5 liters central fuel injection engine,” SAE#810494, 1981.

    Google Scholar 

  30. E. Hendricks and T. Vesterholm, “Nonlinear transient fuel film compensation,” SAE#930767, 1993.

    Google Scholar 

  31. Kjergaard, L., Nielsen, S., Vesterholm, T. and Hendricks, E., Advanced Nonlinear Engine Idle Speed Control Systems, SAE Technical Paper No. 940974, 1994.

    Google Scholar 

  32. M. Livshiz, D. J. Sanvido, and S. D. Stiles, “Nonlinear engine model for idle speed control,” Proceedings of IEEE Conference on Decision and Control, vol. 3, pp. 2449–2451, 1994.

    Google Scholar 

  33. A. J. Bhatti, S. K. Spurgeon, and R. Dorey, et. al, “Rapid prototyping of a sliding mode controller for idle speed control,” Proceedings of IEE Colloquium on System Control Integration and Rapid Prototyping in the Automotive Industry, pp. 3/1–3/7, 1997.

    Google Scholar 

  34. H.-G. Weil, G. Probst, and F. Graf, “Fuzzy expert system for automatic transmission control,” Proceedings of IEEE Conference on Control Applications, vol. 2, pp. 716–721, 1992.

    Google Scholar 

  35. A. Bastian, S. Tano, and T. Oyama, et. al, “FATE: fuzzy logic automatic transmission expert system,” Proceedings of IEEE International Conference on Fuzzy Systems, vol. 5, pp. 5–6, 1995.

    Google Scholar 

  36. K. Hayashi, Y. Shimizu, and Y., Dote, et. al, “Neuro fuzzy transmission control for automobile with variable loads,” IEEE Transactions on Control Systems Technology, vol. 3, no. 1, pp. 49–53, 1995.

    Article  Google Scholar 

  37. D.B. Maciuca, J.K. Hedrick, “Advanced nonlinear brake system control for vehicle platooning,” Proceedings of European Control Conference, 1995.

    Google Scholar 

  38. Y. Lei, Y. Li, and H. Tian, et. al, “A research on gear position decision and combination control in braking condition,” Proceedings of IEEE International Vehicle Electronics Conference, pp. 227–231, 2001.

    Google Scholar 

  39. J. Marco, R. Ball, and R. P. Jones, et. al, “A systems modelling and simulation approach to gear shift effort analysis,” International Journal of Vehicle Design, vol. 25, no. 4, pp. 317–338, 2001.

    Article  Google Scholar 

  40. B. Jacobson and M. Spickenreuther, “Gearshift sequence optimization for vehicles with automated non-powershifting transmissions,” International Journal of Vehicle Design, vol. 32, no. 3/4, pp. 187–207, 2003.

    Article  Google Scholar 

  41. S. E. Moon, M. S. Kim, and H. Yeo, et. al, “Design and implementation of clutch-by-wire system for automated manual transmissions,” International Journal of Vehicle Design, vol. 36, no. 1, pp. 83–100, 2004.

    Article  Google Scholar 

  42. J. Murin, “A controlled diesel drive line with hydrostatic transmission: Part 1-mathematical model,” International Journal of Vehicle Design, vol. 38, no. 2/3, pp. 109–122, 2005.

    Article  Google Scholar 

  43. J. Murin, “A controlled diesel drive line with hydrostatic transmission: Part 2-dynamic properties at periodic loading,” International Journal of Vehicle Design, vol. 38, no. 2/3, pp. 123–138, 2005.

    Article  Google Scholar 

  44. C. Chan, T. Volz, and D. Breitweiser, et. al, “System design and control considerations of automotive continuously variable transmissions,” SAE#840048, 1984.

    Google Scholar 

  45. D. Cho and J. K. Hedrick, “Automotive powertrain modeling for control,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 114, no. 4, pp. 568–576, 1989.

    Article  Google Scholar 

  46. S. Sakaguchi, I. Sakai, and T. Haga, “Application of fuzzy logic to shift scheduling method for automatic transmission,” Proceedings of IEEE International Conference on Fuzzy Systems, vol. 1, pp: 52–58, 1993.

    Google Scholar 

  47. S. Liu and B. Paden, “A survey of today’s CVT controls,” Proceedings of IEEE Conference on Decision and Control, pp. 4738–4743, 1997.

    Google Scholar 

  48. A. Beydoun, L. Y. Wang, and J. Sun, et. al, “Hybrid control of automotive powertrain systems: a case study,” Proceedings of International Workshop on Hybrid Systems: Computation and Control, pp. 33–48, 1998.

    Google Scholar 

  49. S. Takahashi, “Fundamental study of low fuel consumption control scheme based on combination of direct fuel injection engine and continuously variable transmission,” Proceedings of IEEE Conference on Control and Decision, pp. 1522–1529, 1998.

    Google Scholar 

  50. H. D. Lee and S. K. Sul, “Fuzzy-logic-based torque control strategy for parallel-type hybrid electric vehicle,” IEEE Transactions on Industrial Electronics, vol. 45, pp. 625–632, 1998.

    Article  Google Scholar 

  51. B. K. Powell, K. E. Bailey, and S. R. Cikanek, “Dynamic modeling and control of hybrid electric vehicle powertrain systems,” IEEE Control Systems Magazine, vol. 18, no. 5, pp. 17–23, 1998.

    Article  Google Scholar 

  52. I. Kolmanovsky, J. Sun, and L. Wang, “Coordinated control of lean burn gasoline engines with continuously variable transmissions,” Proceedings of American Control Conference, vol. 4, pp. 2673–2677, 1999.

    Google Scholar 

  53. M. Yasuoka, M. Uchida, and S. Katakura, et. al, “An integrated control algorithm for an SI engine and a CVT,” SAE#1999-01-0752, pp. 155–160, 1999.

    Google Scholar 

  54. H.-D. Lee, S.-K. Sul, and H.-S. Cho, et. al, “Advanced gear-shifting and clutching strategy for a parallel-hybrid vehicle,” IEEE Industry Applications Magazine, vol. 6, no. 6, pp. 26–32, 2000.

    Article  Google Scholar 

  55. P. Setlur, J. R. Wagner, and D. M. Dawson, et. al, “Nonlinear control of a continuously variable transmission (CVT),” IEEE Transactions on Control Systems Technology, vol. 11, no. 1, pp. 101–108, 2003.

    Article  Google Scholar 

  56. S. Onoda and A. Emadi, “PSIM-based modeling of automotive power systems: conventional, electric, and hybrid electric vehicles,” IEEE Transactions on Vehicular Technology, vol. 53, no. 2, pp. 390–400, 2004.

    Article  Google Scholar 

  57. S. Shen and F. E. Veldpaus, “Analysis and control of a flywheel hybrid vehicular powertrain,” IEEE Transactions on Control Systems Technology, vol. 12, no. 5, pp. 645–660, 2004.

    Article  Google Scholar 

  58. R. W. Johnson, J. L. Evans, and P. Jacobsen, et. al, “The changing automotive environment: high-temperature electronics,” IEEE Transactions on Electronics Packaging Manufacturing, Part C, vol. 27, no. 3, pp. 164–176, 2004.

    Article  Google Scholar 

  59. J.-S. Won, R. Langari, M. Ehsani, “An energy management and charge sustaining strategy for a parallel hybrid vehicle with CVT,” IEEE Transactions on Control Systems Technology, vol. 13, no. 2, pp, 313–320, 2005.

    Article  Google Scholar 

  60. P. Stewart and P. J. Fleming, “Drive-by-wire control of automotive driveline oscillations by response surface methodology,” IEEE Transactions on Control Systems Technology, vol. 12, no. 5, pp. 737–741, 2004.

    Article  Google Scholar 

  61. K. Togai, K. Choi, and T. Takeuchi, “Vibration suppression strategy with model based command shaping: application to passenger car powertrain,” Proceedings of SICE Annual Conference, vol. 2, pp. 941–943, 2002.

    Article  Google Scholar 

  62. D. Lefebvre, P. Chevrel, and S. Richard, “An H-infinity-based control design methodology dedicated to the active control of vehicle longitudinal oscillations,” IEEE Transactions on Control Systems Technology, vol. 11, no. 6, pp. 948–956, 2003.

    Article  Google Scholar 

  63. K. Togai and T. Takeuchi, “CVT drive train vibration analysis and active control system design,” Mitsubishi Motors Technical Review, 2005.

    Google Scholar 

  64. Y. Yu, S. M. Peelamedu, and N. G. Naganathan, “Automotive vehicle engine mounting systems: a survey,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 123, pp. 186–194, 2001.

    Article  Google Scholar 

  65. K. B. Kelly and H. J. Holcombe, “Aerodynamics for body engineers,” Automotive Aerodynamics, Progress in Technology Series, Society of Automotive Engineers, vol. 16, 1978.

    Google Scholar 

  66. M. G. L. Cresswell and P. B. Hertz, “Aerodynamic drag implications of exterior truck mirrors,” SAE#920202, pp: 29–34, 1992.

    Google Scholar 

  67. S. A. Coleman and C. J. Baker, “Reduction of accident risk for high sided road vehicles in cross winds,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 44, pp. 2685–2695, 1992.

    Article  Google Scholar 

  68. R. H. Banard, Road Vehicle Aerodynamic Design-An Introduction, Addison Wesley, Longman Ltd, Harlow, 1996.

    Google Scholar 

  69. V. Eowsakul and T. J. Ortolani, “Improving the aerodynamic characteristics of a Dodge Ram pickup truck,” ASME IMECE#97-WA/DE-18, 1997.

    Google Scholar 

  70. T. Takeuchi and I. Kohri, “Development of truck and bus aerodynamics using computational fluid dynamics,” Journal of SAE Review, vol. 18, no. 2, pp. 188–188(1), 1997.

    Google Scholar 

  71. W.-H. Hucho, Aerodynamics of Road Vehicles: from Fluid Mechanics to Vehicle Engineering, Society of Automotive Engineers, Warrendale, 1998.

    Google Scholar 

  72. S. Roy and P. Srinivasan, “External flow analysis of a truck for drag reduction,” SAE #2000-01-3500, 2000.

    Google Scholar 

  73. R. J. Englar, “Development of pneumatic aerodynamic devices to improve the performance, economics, and safety of heavy vehicles,” SAW/TPS-2000-01-2208, 2000.

    Google Scholar 

  74. J.-W. Wong, The Theory of Ground Vehicle, 3rd ed., John Wiley & Sons, 2001.

    Google Scholar 

  75. W.-H. Hucho, “Aerodynamics of road vehicles-state of the art and tasks for the future,” Proceedings of KULI Usermeeting, 2003.

    Google Scholar 

  76. H. Gotz and G. Mayr, “Aerodynamics of road vehicles,” SAE International, pp. 415–488, 1998.

    Google Scholar 

  77. P. Kachroo, M. Tomizuka, and A. M. Agogino, “A comprehensive strategy for longitudinal vehicle control with fuzzy supervisory expert systems,” Proceedings of IEEE International Conference on systems, Man and Cybernetics: Intelligent Systems for the 21st Century, pp. 765–770, 1995.

    Google Scholar 

  78. D. Yanakiev and 1. Kanellakopoulos, “Longitudinal control of heavy-duty vehicles for automated highway systems,” Proceedings of American Control Conference, vol. 5, pp. 3096–3100, 1995.

    Article  Google Scholar 

  79. P. S. Fancher, H. Peng, and Z. Bareket, “Comparative analyses of three types of headway control systems for heavy commercial vehicles,” Vehicle System Dynamics, Supplement, vol. 25, pp.139–151, 1996.

    Article  Google Scholar 

  80. M. Shino, N. Miyamoto, and Y.-Q. Wang, et. al, “Traction control of electric vehicles considering vehicle stability,” Proceedings of International Workshop on Advanced Motion Control, pp. 311–316, 2000.

    Google Scholar 

  81. M. Tai and M. Tomizuka, “Robust longitudinal velocity tracking of vehicles using traction and brake control,” Proceedings of International Workshop on Advanced Motion Control, pp. 305–310, 2000.

    Google Scholar 

  82. G. Bartolini, A. Ferrara, and P. Pisu, “Longitudinal control design of passenger vehicles with second order sliding modes,” Proceedings of American Control Conference, vol. 1, no. 6, pp. 120–124, 2000.

    Google Scholar 

  83. R. Outbib and A. Rachid, “Control of vehicle speed: a nonlinear approach,” Proceedings of IEEE Conference on Decision and Control, vol. 1, pp. 462–463, 2000.

    Google Scholar 

  84. M. Druzhinina, A. G. Stefanopoulou, and L. Moklegaard, “Speed gradient approach to longitudinal control of heavy-duty vehicles equipped with variable compression brake,” IEEE Transactions on Control Systems Technology, vol. 10, no. 2, pp. 209–220, 2002. Good paper!!!

    Article  Google Scholar 

  85. R. Pusca, Y. Ait-Amirat, and A. Berthon, et. al, “Modeling and simulation of a traction control algorithm for an electric vehicle with four separate wheel drives,” Proceedings of IEEE Vehicular Technology Conference, vol. 3, pp. 1671–1675, 2002.

    Google Scholar 

  86. H.-C. Choi and S.-K. Hong, “Hybrid control for longitudinal speed and traction of vehicles,” Proceedings of IEEE Conference of Industrial Electronics Society, vol. 2, pp. 1675–1680, 2002.

    Google Scholar 

  87. X. Y. Lu and J. K. Hedrick, “Modeling of heavy-duty vehicles for longitudinal control,” Proceedings of International Symposium on Advanced Vehicle Control, 2002.

    Google Scholar 

  88. X. Y. Lu and J. K. Hedrick, “Longitudinal control design and experiment for heavy-duty trucks,” Proceedings of American Control Conference, pp. 36–41,2003.

    Google Scholar 

  89. H. Lee and M. Tomizuka, “Adaptive vehicle traction force control for intelligent vehicle highway systems (IVHSs),” IEEE Transactions on Industrial Electronics, vol. 50, no. 1, pp. 37–47, 2003.

    Article  Google Scholar 

  90. P. Khatun, C. M. Bingham, and N. Schofield, et. al, “Application of fuzzy control algorithms for electric vehicle antilock braking/traction control systems,” IEEE Transactions on Vehicular Technology, vol. 52, no. 5, pp. 1356–1364, 2003.

    Article  Google Scholar 

  91. J. Sainte-Marie, S. Mammar, and L. Nouveliere, et. al, “Sub-optimal longitudinal control of road vehicles with capacity and safety considerations,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 126, pp. 26–35, 2004.

    Article  Google Scholar 

  92. R. Emig, H. Goebels, and H. J. Schramm, “Antilock braking systems (ABS) for commercial vehicles-status 1990 and future prospects,” Proceedings of International Congress on Transportation Electronics, pp. 515–523, 1990.

    Google Scholar 

  93. D. B. Maciuca, J.K. Hedrick, “Advanced nonlinear brake system control for vehicle platooning,” Proceedings of European Control Conference, 1995.

    Google Scholar 

  94. P. E. Wellstead and N. B. O. L. Pettit, “Analysis and redesign of an anti-lock brake system controller,” IEE Proceedings-Control Theory and Applications, vol. 144, no. 5, pp. 413–426, 1997.

    Article  Google Scholar 

  95. W. K. Lennon and K. M. Passino, “Intelligent control for brake systems,” IEEE Transactions on Control Systems Technology, vol. 7, no. 2, pp. 188–202, 1999.

    Article  Google Scholar 

  96. D. Zhang, H. Zheng, and J. Sun, et. al, “Simulation study for anti-lock braking system of a light bus,” Proceedings of IEEE International Vehicle Electronics Conference, pp. 70–77, 1999.

    Google Scholar 

  97. P. Tsiotras and C. Canudas de Wit, “On the optimal braking of wheeled vehicles,” Proceedings of American Control Conference, Vol. 1, pp. 569–573, 2000.

    Google Scholar 

  98. F. Jiang and Z. Gao, “An application of nonlinear PID control to a class of truck ABS problems,” Proceedings of IEEE Conference on Decision and Control, Vol. 1, pp. 516–521, 2001.

    Google Scholar 

  99. L. Petersen, T. A. Johansen, and J. Kalkkuhl, et. al, “Wheel slip control in ABS using gain scheduled constrained LQR,” Proceedings of European Control Conference, 2001.

    Google Scholar 

  100. R. Kazemi and K. J. Zaviyeh, “Development of a new ABS for passenger cars using dynamic surface control method,” Proceedings of American Control Conference, Vol. 2, pp. 677–683, 2001.

    Google Scholar 

  101. T. Kaneko, I. Kageyama, and H. Tsunashima, “Braking stability of articulated vehicle on highway,” Vehicle System Dynamics, Supplement, Vol. 37, pp. 1–11, 2002.

    Article  Google Scholar 

  102. Y. Lee and S. H. Zak, “Designing a genetic neural fuzzy antilock-brake-system controller,” IEEE Transactions on Evolutionary Computation, Vol. 6, no. 2, pp. 198–211, 2002.

    Article  Google Scholar 

  103. H. Yu and U. Ozguner, “Extremum-seeking control strategy for ABS system with time delay,” Proceedings of American Control Conference, Vol. 5, pp. 3753–3758, 2002.

    Google Scholar 

  104. J. Yi, L. Alvarez, and R. Horowitz, “Adaptive emergency braking control with underestimation of friction coefficient,” IEEE Transactions on Control Systems Technology, Vol. 10, no. 3, pp. 381–392, 2002.

    Article  Google Scholar 

  105. C. Toy, K. Leung, L. Alvarez and R. Horowitz. “Emergency vehicle maneuvers and control laws for automated highway systems,” IEEE Transactions on Intelligent Transportation Systems, Vol. 3, no. 2, pp. 109–119, 2002.

    Article  Google Scholar 

  106. J. Yi, L. Alvarez, and R. Horowitz, et. al, “Adaptive emergency braking control using a dynamic tire/road friction model,” Proceedings of IEEE Conference on Decision and Control, Vol. 1, pp: 456–461, 2000.

    Google Scholar 

  107. J. Yi, L. Alvarez, and X. Claeys, et. al, “Emergency braking control with an observer-based dynamic tire/road friction model and wheel angular velocity measurement,” Vehicle System Dynamics, Vol. 39, no. 2, pp. 81–97, 2003.

    Article  Google Scholar 

  108. M. Schinkel and K. Hunt, “Anti-lock braking control using a sliding mode like approach,” Proceedings of American Control Conference, Vol. 3, pp. 2386–2391, 2002.

    Google Scholar 

  109. G. Celentano, R. Iervolino, and S. Porreca, et. al, “Car brake system modeling for longitudinal control design,” Proceedings of IEEE Conference on Control Applications, Vol. 1, pp. 25–30, 2003.

    Google Scholar 

  110. S. Armeni and E. Mosca, “ABS with constrained minimum energy control law,” Proceedings of IEEE Conference on Control Applications, Vol. 1, pp. 19–24, 2003.

    Google Scholar 

  111. S. Drakunov, U. Ozguner, and P. Dix, et. al, “ABS control using optimum search via sliding modes,” IEEE Transactions on Control Systems Technology, Vol. 3, no. 1, pp: 79–85, 1995.

    Article  Google Scholar 

  112. M. Krstik and H.-H. Wang, “Design and stability analysis of extremum seeking feedback for general nonlinear systems,” Proceedings of IEEE Conference on Decision and Control, pp. 1743–1748, 1997.

    Google Scholar 

  113. K. Park and S.-J. Heo, “A study on the brake-by-wire system using hardware-in-the-loop simulation,” International Journal of Vehicle Design, Vol. 36, no. 1, pp. 38–49, 2004.

    Article  Google Scholar 

  114. S. Park, S. Bae, and J. M. Lee, “Numerical evaluation of braking feel to design optimal brake-by-wire system,” International Journal of Vehicle Design, Vol. 37, no. 1, pp. 1–23, 2005.

    Article  Google Scholar 

  115. S. K. Mazumdar and C. C. Lim, “The application of neural networks to anti-skid brake system design,” Proceedings of IEEE International Conference on Neural Networks, Vol. 5, pp. 2409–2414, 1995.

    Article  Google Scholar 

  116. G. F. Mauer, “A fuzzy logic controller for an ABS braking system,” IEEE Transactions on Fuzzy Systems, Vol. 3, no. 4, pp. 381–388, 1995.

    Article  Google Scholar 

  117. M.-R. Akbarzadeh, K.-J. Emami, and N. Pariz, “Adaptive discrete-time fuzzy sliding mode control for anti-lock braking systems,” Proceedings of Annual Meeting of the North American Fuzzy Information Processing Society, pp. 554–559, 2002.

    Google Scholar 

  118. C.-M. Lin and C.-F. Hsu, “Self-learning fuzzy sliding-mode control for antilock braking systems,” IEEE Transactions on Control Systems Technology, Vol. 11, no. 2, pp. 273–278, 2003.

    Article  Google Scholar 

  119. C.-K. Chen, “Development of fuzzy controlled ABS systems for motorcycles,” International Journal of Vehicle Design, Vol. 34, no. 1, pp. 84–100, 2004.

    Article  Google Scholar 

  120. S. Germann and R. Isermann, “Nonlinaer distance and cruise control for passenger cars,” Proceedings of American Control Conference, pp. 3081–3085, 1995.

    Google Scholar 

  121. H. M. Kim, J. Dickerson, and B. Kosko, “Fuzzy throttle and brake control for platoon of smart cars,” Fuzzy Sets and Systems, Vol. 84, no. 3, pp. 209–234, 1996.

    Article  Google Scholar 

  122. H. Holzmann, S. Germann, and C. Halfmann, et. al, “Intelligent fuzzy distance and cruise control for passenger cars,” Journal of Intelligent and Fuzzy Systems, Vol. 6, no. 3, pp. 315–327, 1998.

    Google Scholar 

  123. P. Seiler, B. Song, and J. K. Hedrick, “Development of a collision avoidance system,” Proceedings of SAE Conference, pp. 97–103, 1998.

    Google Scholar 

  124. K. J. Hunt, T. A. Johansen, and J. Kalkkuhl, et. al, “Speed control design for an experimental vehicle using a generalized gain scheduling approach,” IEEE Transactions on Control Systems Technology, Vol. 8, no. 3, pp. 381–395, 2000.

    Article  Google Scholar 

  125. J. E. Naranjo, C. Gonzalez, and J. Reviejo, et. al, “Adaptive fuzzy control for inter-vehicle gap keeping,” IEEE Transactions on Intelligent Transportation Systems, Vol. 4, no. 3, pp. 132–142, 2003.

    Article  Google Scholar 

  126. B. J. Olson, S. W. Shaw, and G. Stepan, “Nonlinear dynamics of vehicle traction,” Vehicle System Dynamics, Vol. 40, no. 6, pp. 377–399, 2003.

    Article  Google Scholar 

  127. Z. Bareket, P. S. Fancher, and H. Peng, et. al, “Methodology for assessing adaptive cruise control behavior,” IEEE Transactions on Intelligent Transportation Systems, Vol. 4, no. 3, pp. 123–131, 2003.

    Article  Google Scholar 

  128. V. L. Bageshwar, W. L. Garrard, and R. Rajamani, “Model predictive control of transitional maneuvers for adaptive cruise control vehicles,” IEEE Transactions on Vehicular Technology, Vol. 53, no. 5, pp. 1573–1585, 2004.

    Article  Google Scholar 

  129. A. Ferrara and P. Pisu, “Minimum sensor second-order sliding mode longitudinal control of passenger vehicles,” IEEE Transactions Intelligent Transportation Systems, Vol. 5, no. 1, pp. 20–32, 2004.

    Article  Google Scholar 

  130. R. Cann, L. R. Pujara, and J. Lieh, “Influence of motor drive parameters on the robust stability of electric power steering systems,” Power Electronics in Transportation, pp. 103–108, 1998.

    Google Scholar 

  131. C. Unsal, P. Kachroo and J. S. Bay, “Multiple stochastic learning automata for vehicle path control in an automated highway system,” IEEE Transactions on Systems, Man, and Cybernetics, Part A, Vol. 29, no. 1, pp. 120–128, 1999.

    Article  Google Scholar 

  132. L. Wu, Y. Xu, and F.-Y. Wang, et. al, “Supervised learning of longitudinal driving behavior for intelligent vehicles using neuro-fuzzy networks: initial experimental results,” International Journal of Intelligent Control and Systems, Vol. 3, no. 4, pp. 443–463, 1999.

    Google Scholar 

  133. L. Wu, Y. Xu, and F.-Y. Wang, et. al, “Supervised learning of longitudinal driving behavior for intelligent vehicles using neuro-fuzzy networks: initial experimental results,” International Journal of Intelligent Control and Systems, Vol. 3, no. 4, pp. 443–463, 1999.

    Google Scholar 

  134. F.-Y. Wang, L. Li and P.g Li, “Adaptive vehicle driving control and driver assistance using Neuro-Fuzzy networks,” International Journal of Intelligent Control and Systems, 2004.

    Google Scholar 

  135. J. Bengtsson, R. Johansson, and A. Sjogren, “Modeling of drivers’ longitudinal behavior,” Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Vol. 2, pp. 1076–1081, 2001.

    Google Scholar 

  136. S. I. Jeon, S. T. Jo and Y. I. Park, et. al, “Multi-Mode driving control of a parallel hybrid electric vehicle using driving pattern recognition,” ASME Journal of Dynamic Systems Measurement and Control, vol 124, no. 1, pp. 141–149, 2002.

    Article  Google Scholar 

  137. R. Iwaki, T. Kaneko, and I. Kageyama, “A study on a driver model for longitudinal control on heavy duty vehicle,” Vehicle System Dynamics, Supplement, Vol. 41, pp. 332–340, 2004.

    Google Scholar 

  138. T. A. Johansen, I. Petersen, J. Kalkkuhl, J. Ludemann, “Gain-scheduled wheel slip control in automotive brake systems,” IEEE Transactions on Control Systems Technology, Vol. 11, pp. 799–811, 2003.

    Article  Google Scholar 

  139. I. Petersen, T. A. Johansen, and J. Kalkkuhl, et. al, “Wheel slip control using gain-scheduled LQ-LPV/LMI analysis and experimental results,” European Control Conference, 2003.

    Google Scholar 

  140. S. Taheri and E. H. Law, “Slip control braking of an automobile during combined braking and steering manoeuvres,” Advanced Automotive Technologies, Vol. 40, pp: 209–227, 1991.

    Google Scholar 

  141. B. Song, J. K. Hedrick, and A. Howell, “Fault tolerant control and classification for longitudinal vehicle control,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 125, pp. 320–329, 2003.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Advanced Vehicle Longitudinal Motion Control. In: Advanced Motion Control and Sensing for Intelligent Vehicles. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-44409-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-44409-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-44407-9

  • Online ISBN: 978-0-387-44409-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics