Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 594))

Abstract

The most important interactions between cellular molecules have a high affinity, are unique and specific, and require a network approach for a detailed description. Molecular chaperones usually have many first and second neighbors in protein-protein interaction networks and they play a prominent role in signaling and transcriptional regulatory networks of the cell. Chaperones may uncouple protein, signaling, membranous, organellar and transcriptional networks during stress, which gives an additional protection for the cell at the network-level. Recent advances uncovered that chaperones act as genetic buffers stabilizing the phenotype of various cells and organisms. This chaperone effect on the emergent properties of cellular networks may be generalized to proteins having a specific, central position and low affinity, weak links in protein networks. Cellular networks are preferentially remodeled in various diseases and aging, which may help us to design novel therapeutic and anti-aging strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barabasi AL, Oltvai ZN. Network biology: Understanding the cell’s functional organization. Nat Rev Genet 2004; 5:101–113.

    Article  PubMed  CAS  Google Scholar 

  2. Albert R. Scale-free networks in cell biology. J Cell Sci 2005; 118:4947–4957.

    Article  PubMed  CAS  Google Scholar 

  3. Csermely P. Weak links: Stabilizers of complex systems from proteins to social networks. Heidelberg: Springer Verlag, 2006.

    Google Scholar 

  4. von Mering C, Krause R, Snel B et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 2002; 417:399–403.

    Article  Google Scholar 

  5. Rual JF, Venkatesan K, Hao T et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005; 437:1173–1178.

    Article  PubMed  CAS  Google Scholar 

  6. Stelzl U, Worm U, Lalowski M et al. A human protein-protein interaction network: A resource for annotating the proteome. Cell 2005; 122:957–968.

    Article  PubMed  CAS  Google Scholar 

  7. White MA, Anderson RG. Signaling networks in living cells. Annu Rev Pharmacol Toxicol 2005; 45:587–603.

    Article  PubMed  CAS  Google Scholar 

  8. Borodina I, Nielsen J. From genomes to in silico cells via metabolic networks. Curr Opin Biotechnol 2005; 16:350–355.

    Article  PubMed  CAS  Google Scholar 

  9. Blais A, Dynlacht BD. Constructing transcriptional regulatory networks. Genes Dev 2005; 19:1499–1511.

    Article  PubMed  CAS  Google Scholar 

  10. Arita M. The metabolic world of Escherichia coli is not small. Proc Natl Acad Sci USA 2004; 101:1543–1547.

    Article  PubMed  CAS  Google Scholar 

  11. Ma HW, Zeng AP. Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics 2003; 19:220–277.

    Google Scholar 

  12. Tanaka R, Yi TM, Doyle J. Some protein interaction data do not exhibit power law statistics. FEBS Lett 2005; 579:5140–5144.

    Article  PubMed  CAS  Google Scholar 

  13. Tsigelny IF, Nigam SK. Complex dynamics of chaperone-protein interactions under cellular stress. Cell Biochem Biophys 2004; 40:263–276.

    Article  PubMed  CAS  Google Scholar 

  14. Csermely P. Strong links are important-But weak links stabilize them. Trends Biochem Sci 2004; 29:331–334.

    Article  PubMed  CAS  Google Scholar 

  15. Zhao R, Davey M, Hsu YC et al. Navigating the chaperone network: An integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 2005; 120:715–727.

    Article  PubMed  CAS  Google Scholar 

  16. Nardai G, Vegh E, Prohaszka Z et al. Chaperone-related immune dysfunctions: An emergent property of distorted chaperone-networks. Trends Immunol 2006; 27:74–79

    Article  PubMed  CAS  Google Scholar 

  17. Soti C, Pal C, Papp B et al. Chaperones as regulatory elements of cellular networks. Curr Op Cell Biol 2005; 17:210–215.

    Article  PubMed  CAS  Google Scholar 

  18. Frydman J. Folding of newly translated proteins in vivo: The role of molecular chaperones. Annu Rev Biochem 2001; 70:603–647.

    Article  PubMed  CAS  Google Scholar 

  19. Kleizen B, Braakman I. Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 2004; 16:343–349.

    Article  PubMed  CAS  Google Scholar 

  20. Young JC, Agashe VR, Siegers K et al. Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 2004; 5:781–791.

    Article  PubMed  CAS  Google Scholar 

  21. Blatch GL, ed. Networking of Chaperones by Co-Chaperones. Georgetown: Landes Bioscience, 2006.

    Google Scholar 

  22. Young JC, Hoogenraad NJ, Hartl FU. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 2003; 112:41–50.

    Article  PubMed  CAS  Google Scholar 

  23. Imai J, Maruya M, Yashiroda H et al. The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J 2003; 22:3557–3567.

    Article  PubMed  CAS  Google Scholar 

  24. Whittier JE, Xiong Y, Rechsteiner MC et al. Hsp90 enhances degradation of oxidized calmodulin by the 20 S proteasome. J Biol Chem 2004; 279:46135–46142.

    Article  PubMed  CAS  Google Scholar 

  25. Tsvetkova NM, Horvath I, Torok Z et al. Small heat-shock proteins regulate membrane lipid polymorphism. Proc Natl Acad Sci USA 2002; 99:13504–13509.

    Article  PubMed  CAS  Google Scholar 

  26. Torok Z, Horvath I, Goloubinoff P et al. Evidence for a lipochaperonin: Association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions. Proc Natl Acad Sci USA 1997; 94:2192–2197.

    Article  PubMed  CAS  Google Scholar 

  27. Torok Z, Goloubinoff P, Horvath I et al. Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc Natl Acad Sci USA 2001; 98:3098–3103.

    Article  PubMed  CAS  Google Scholar 

  28. Filippin L, Magalhaes PJ, Di Benedetto G et al. Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria. J Biol Chem 2003; 278:39224–39234.

    Article  PubMed  CAS  Google Scholar 

  29. Aon MA, Cortassa S, O’Rourke B. Percolation and criticality in a mitochondrial network. Proc Natl Acad Sci USA 2004; 101:4447–4452.

    Article  PubMed  CAS  Google Scholar 

  30. Szabadkai G, Simoni AM, Chami M et al. Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell 2004; 16:59–68.

    Article  PubMed  CAS  Google Scholar 

  31. Wolosewick JJ, Porter KR. Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality. J Cell Biol 1979; 82:114–139.

    Article  PubMed  CAS  Google Scholar 

  32. Schliwa M, van Blerkom J, Porter KR. Stabilization of the cytoplasmic ground substance in detergent-opened cells and a structural and biochemical analysis of its composition. Proc Natl Acad Sci USA 1981; 78:4329–4333.

    Article  PubMed  CAS  Google Scholar 

  33. Clegg JS. Properties and metabolism of the aqueous cytoplasm and its boundaries. Am J Physiol 1984; 246:R133–R151.

    PubMed  CAS  Google Scholar 

  34. Luby-Phelps K, Lanni F, Taylor DL. The submicroscopic properties of cytoplasm as a determinant of cellular function. Annu Rev Biophys Biophys Chem 1988; 17:369–396.

    Article  PubMed  CAS  Google Scholar 

  35. Hochachka PW. The metabolic implications of intracellular circulation. Proc Natl Acad Sci USA 1999; 96:12233–12239.

    Article  PubMed  CAS  Google Scholar 

  36. Verkman AS. Solute and macromolecule diffusion in cellular aqueous compartments. Trends Biochem Sci 2002; 27:27–33.

    Article  PubMed  CAS  Google Scholar 

  37. Spitzer JJ, Poolman B. Electrochemical structure of the crowded cytoplasm. Trends Biochem Sci 2005; 30:536–541.

    Article  PubMed  CAS  Google Scholar 

  38. Csermely P. A nonconventional role of molecular chaperones: Involvement in the cytoarchitecture. News Physiol Sci 2001; 16:123–126.

    PubMed  CAS  Google Scholar 

  39. Sreedhar AS, Mihaly K, Pato B et al. Hsp90 inhibition accelerates cell lysis. Anti-Hsp90 ribozyme reveals a complex mechanism of Hsp90 inhibitors involving both superoxide-and Hsp90-dependent events. J Biol Chem 2003; 278:35231–35240.

    Article  PubMed  CAS  Google Scholar 

  40. Michels AA, Kanon B, Konings AW et al. Hsp70 and Hsp40 chaperone activities in the cytoplasm and the nucleus of mammalian cells. J Biol Chem 1997; 272:33283–33289.

    Article  PubMed  CAS  Google Scholar 

  41. Nollen EA, Salomons FA, Brunsting JF et al. Dynamic changes in the localization of thermally unfolded nuclear proteins associated with chaperone-dependent protection. Proc Natl Acad Sci USA 2001; 98:12038–12043.

    Article  PubMed  CAS  Google Scholar 

  42. Guo Y, Guettouche T, Fenna M et al. Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. J Biol Chem 2001; 276:45791–45799.

    Article  PubMed  CAS  Google Scholar 

  43. Freeman BC, Yamamoto KR. Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 2002; 296:2232–2235.

    Article  PubMed  CAS  Google Scholar 

  44. Rutherford SL, Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature 1998; 396:336–342.

    Article  PubMed  CAS  Google Scholar 

  45. Fares MA, Ruiz-Gonzalez MX, Moya A et al. Endosymbiotic bacteria: GroEL buffers against deleterious mutations. Nature 2002; 417:398.

    Article  PubMed  CAS  Google Scholar 

  46. Queitsch C, Sangster TA, Lindquist S. Hsp90 as a capacitor of phenotypic variation. Nature 2002; 417:618–624.

    Article  PubMed  CAS  Google Scholar 

  47. Cowen LE, Lindquist S. Hsp90 potentiates the rapid evolution of new traits: Drug resistance in diverse fungi. Science 2005; 309:2185–2189.

    Article  PubMed  CAS  Google Scholar 

  48. Sollars V, Lu X, Xiao L et al. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat Genet 2003; 33:70–74.

    Article  PubMed  CAS  Google Scholar 

  49. Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer 2005; 5:761–772.

    Article  PubMed  CAS  Google Scholar 

  50. Csermely P. Chaperone-overload as a possible contributor to “civilization diseases”: Atherosclerosis, cancer, diabetes. Trends Genet 2001; 17:701–704.

    Article  PubMed  CAS  Google Scholar 

  51. Nardai G, Csermely P, Söti C. Chaperone function and chaperone overload in the aged. Exp Gerontol 2002; 37:1255–1260.

    Article  Google Scholar 

  52. Söti C, Csermely P. Chaperones and aging: Their role in neurodegeneration and other civilizational diseases. Neurochem International 2002; 41:383–389.

    Article  Google Scholar 

  53. Papp E, Száraz P, Korcsmáros T et al. Changes of endoplasmic reticulum chaperone complexes, redox state and impaired protein disulflde reductase activity in misfolding alpha-1-antitrypsin transgenic mice. FASEB J 2006, (in press).

    Google Scholar 

  54. Bergman A, Siegal ML. Evolutionary capacitance as a general feature of complex gene networks. Nature 2003; 424:549–552.

    Article  PubMed  CAS  Google Scholar 

  55. True HL, Berlin I, Lindquist SL. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 2004; 431:184–187.

    Article  PubMed  CAS  Google Scholar 

  56. Sangster TA, Lindquist S, Queitsch C. Under cover: Causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays 2004; 26:348–362.

    Article  PubMed  CAS  Google Scholar 

  57. Csermely P, Agoston V, Pongor S. The efficiency of multi-target drugs: The network approach might help drug design. Trends Pharmacol Sci 2005; 26:178–182.

    Article  PubMed  CAS  Google Scholar 

  58. Vigh L, Literati PN, Horvath I et al. Bimoclomol: A nontoxic, hydroxylamine derivative with stress protein-inducing activity and cytoprotective effects. Nat Med 1997; 3:1150–1154.

    Article  PubMed  CAS  Google Scholar 

  59. Bernier V, Lagace M, Bichet DG et al. Pharmacological chaperones: Potential treatment for con-formational diseases. Trends Endocrinol Metab 2004; 15:222–228.

    Article  PubMed  CAS  Google Scholar 

  60. Neckers L, Neckers K. Heat-shock protein 90 inhibitors as novel cancer chemotherapeutics-An update. Expert Opin Emerg Drugs 2005; 10:137–149.

    Article  PubMed  CAS  Google Scholar 

  61. Söti C, Nagy E, Giricz Z et al. Heat shock proteins as emerging therapeutic targets. Br J Pharmacol 2005; 146:769–780.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Csermely .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Csermely, P., Söti, C., Blatch, G.L. (2007). Chaperones as Parts of Cellular Networks. In: Csermely, P., Vígh, L. (eds) Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks. Advances in Experimental Medicine and Biology, vol 594. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39975-1_6

Download citation

Publish with us

Policies and ethics