Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 594))

Abstract

The endoplasmic reticulum is the site of entry into the secretory pathway and represents a major and particularly crowded site of protein biosynthesis. In addition to the complexity of protein folding in any organelle, the ER environment poses further dangers and constraints to the process. A quality control apparatus exists to monitor the maturation of proteins in the ER. Nascent polypeptide chains are specifically prevented from traveling further along the secretory pathway until they have completed their folding or assembly. Proteins that cannot achieve a proper conformation are recognized and removed from the ER for degradation by the 26S proteasome. Finally, the homeostasis of the ER is vigilantly monitored and changes that impinge upon the proper maturation of proteins in this organelle lead to the activation of a signal transduction cascade that serves to restore balance to the ER, Recent studies suggest that some of these diverse functions may be achieved due to the organization of the ER into functional and perhaps even physical sub-domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nunnari J, Walter P. Protein targeting to and translocation across the membrane of the endoplasmic reticulum. Curr Opin Cell Biol 1992;4:573–580.

    Article  PubMed  CAS  Google Scholar 

  2. Johnson AE, van Waes MA. The translocon: A dynamic gateway at the ER membrane. Annu Rev Cell Dev Biol 1999;15:799–842.

    Article  PubMed  Google Scholar 

  3. Meacock SL, Greenfield JJ, High S. Protein targeting and translocation at the endoplasmic reticulum membrane — Through the eye of a needle? Essays Biochem 2000;36:1–13.

    PubMed  CAS  Google Scholar 

  4. Kornfeld R, Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 1985;54:631–664.

    Article  PubMed  CAS  Google Scholar 

  5. LaPointe P, Gurkan C, Balch WE. Mise en place-this bud’s for the Golgi. Mol Cell 2004;14:413–414.

    Article  PubMed  CAS  Google Scholar 

  6. Hwang C, Sinskey AJ, Lodish HF. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 1992;257:1496–1502.

    Article  PubMed  CAS  Google Scholar 

  7. Fahey RC, Hunt JS, Windham GC. On the cysteine and cystine content of proteins. Differences between intracellular and extracellular proteins. J Mol Evol 1977;10:155–160.

    Article  PubMed  CAS  Google Scholar 

  8. Freedman R. Native disulphide bond formation in protein biosynthesis: Evidence for the role of protein disulfide isomerase. Trends Biochem Sci 1984;9:438–441.

    Article  CAS  Google Scholar 

  9. Tu BP, Weissman JS. The FAD-and O(2)-dependent reaction cycle of Erol-mediated oxidative protein folding in the endoplasmic reticulum. Mol Cell 2002;10:983–994.

    Article  PubMed  CAS  Google Scholar 

  10. Mezghrani A, Fassio A, Benham A et al. Manipulation of oxidative protein folding and PDI redox state in mammalian cells. EMBO J 2001;20:6288–6296.

    Article  PubMed  CAS  Google Scholar 

  11. Clairmont CA, De Maio A, Hirschberg CB. Translocation of ATP into the lumen of rough endoplasmic reticulum-derived vesicles and its binding to luminal proteins including BiP (GRP 78) and GRP 94. J Biol Chem 1992;267:3983–3990.

    PubMed  CAS  Google Scholar 

  12. Michalak M, Robert Parker JM, Opas M. Ca(2+) signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 2002;32:269–278.

    Article  PubMed  CAS  Google Scholar 

  13. Lee AS. Coordinated regulation of a set of genes by glucose and calcium ionophores in mammalian cells. Trends Biochem Sci 1987;12:20–23.

    Article  CAS  Google Scholar 

  14. Hendershot LM, Sitia R. Antibody synthesis and assembly. In: Alt FW, Honjo T, Neuberger MS, eds. Molecular Biology of B Cells. Elsevier Science, 2004:261–73.

    Google Scholar 

  15. Ma Y, Hendershot LM. ER chaperone functions during normal and stress conditions. J Chem Neuro 2004;28:51–65.

    Article  CAS  Google Scholar 

  16. Haas IG, Wabl M. Immunoglobulin heavy chain binding protein. Nature 1983;306:387–389.

    Article  PubMed  CAS  Google Scholar 

  17. Bole DG, Hendershot LM, Kearney JF. Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J Cell Biol 1986;102:1558–1566.

    Article  PubMed  CAS  Google Scholar 

  18. Blond-Elguindi S, Cwirla SE, Dower WJ et al. Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 1993;75:717–728.

    Article  PubMed  CAS  Google Scholar 

  19. Kassenbrock CK, Kelly RB. Interaction of heavy chain binding protein (BiP/GRP78) with adenine nucleotides. EMBO J 1989;8:1461–1467.

    PubMed  CAS  Google Scholar 

  20. Wei JY, Gaut JR, Hendershot LM. In vitro dissociation of BiP: Peptide complexes requires a conformational change in BiP after ATP binding but does not require ATP hydrolysis. J Biol Chem 1995;270:26677–26682.

    Article  PubMed  CAS  Google Scholar 

  21. Chung KT, Shen Y, Hendershot LM. BAP, a mammalian BiP associated protein, is a nudeotide exchange factor that regulates the ATPase activity of BiP. J Biol Chem 2002;277:47557–47563.

    Article  PubMed  CAS  Google Scholar 

  22. Helenius A, Aebi M. Intracellular functions of N-linked glycans. Science 2001;291:2364–2369.

    Article  PubMed  CAS  Google Scholar 

  23. Chevet E, Cameron PH, Pelletier MF et al. The endoplasmic reticulum: Integration of protein folding, quality control, signaling and degradation. Curr Opin Struct Biol 2001;11:120–124.

    Article  PubMed  CAS  Google Scholar 

  24. Ware FE, Vassilakos A, Peterson PA et al. The molecular chaperone calnexin binds GlclMan9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem 1995;270:4697–4704.

    Article  PubMed  CAS  Google Scholar 

  25. Hammond C, Braakman I, Helenius A. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci USA 1994;91:913–917.

    Article  PubMed  CAS  Google Scholar 

  26. Sousa M, Parodi AJ. The molecular basis for the recognition of misfolded glycoproteins by the UDP-Glc: Glycoprotein glucosyltransferase. EMBO J 1995;14:4196–4203.

    PubMed  CAS  Google Scholar 

  27. Rietsch A, Beckwith J. The genetics of disulfide bond metabolism. Annu Rev Genet 1998;32:163–184.

    Article  PubMed  CAS  Google Scholar 

  28. Fraud AR, Cuozzo JW, Kaiser CA. Pathways for protein disulphide bond formation. Trends Cell Biol 2000;10:203–210.

    Article  Google Scholar 

  29. Ye Y, Shibata Y, Yun C et al. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 2004;429:841–847.

    Article  PubMed  CAS  Google Scholar 

  30. Schuberth C, Buchberger A. Membrane-bound Ubx2 recruits Cdc48 to ubiquitin ligases and their substrates to ensure efficient ER-associated protein degradation. Nat Cell Biol 2005;7:999–1006.

    Article  PubMed  CAS  Google Scholar 

  31. Oda Y, Hosokawa N, Wada I et al. EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 2003;299:1394–1397.

    Article  PubMed  CAS  Google Scholar 

  32. Molinari M, Calanca V, Galli C et al. Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 2003;299:1397–1400.

    Article  PubMed  CAS  Google Scholar 

  33. Kozutsumi Y, Segal M, Normington K et al. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 1988;332:462–464.

    Article  PubMed  CAS  Google Scholar 

  34. Lee AS. Mammalian stress response: Induction of the glucose-regulated protein family. Curr Opin Cell Biol 1992;4:267–273.

    Article  PubMed  CAS  Google Scholar 

  35. Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: Coordination of gene transcriptional and translational controls. Genes and Development 1999;13:1211–1233.

    PubMed  CAS  Google Scholar 

  36. Ma Y, Hendershot LM. The role of the unfolded protein response in tumour development: Friend or foe? Nat Rev Cancer 2004;4:966–977.

    Article  PubMed  CAS  Google Scholar 

  37. Rao RV, Ellerby HM, Bredesen DE. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 2004;11:372–380.

    Article  PubMed  CAS  Google Scholar 

  38. Mingarro I, Nilsson I, Whitley P et al. Different conformations of nascent polypeptides during translocation across the ER membrane. BMC Cell Biol 2000;1:3.

    Article  PubMed  CAS  Google Scholar 

  39. Johnson AE. Functional ramifications of FRET-detected nascent chain folding far inside the membrane-bound ribosome. Biochem Soc Trans 2004;32:668–672.

    Article  PubMed  CAS  Google Scholar 

  40. Chen W, Helenius A. Role of ribosome and translocon complex during folding of influenza he-magglutinin in the endoplasmic reticulum of living cells. Mol Biol Cell 2000;11:765–772.

    PubMed  CAS  Google Scholar 

  41. Kowarik M, Kung S, Martoglio B et al. Protein folding during cotranslational translocation in the endoplasmic reticulum. Mol Cell 2002;10:769–778.

    Article  PubMed  CAS  Google Scholar 

  42. Hammond C, Helenius A. Folding of VSV G protein: Sequential interaction with BiP and calnexin. Science 1994;266:456–458.

    Article  PubMed  CAS  Google Scholar 

  43. Molinari M, Helenius A. Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science 2000;288:331–333.

    Article  PubMed  CAS  Google Scholar 

  44. Wang N, Daniels R, Hebert DN. The cotranslational maturation of the type I membrane glycoprotein tyrosinase: The heat shock protein 70 system hands off to the lectin-based chaperone system. Mol Biol Cell 2005;16:3740–3752.

    Article  PubMed  CAS  Google Scholar 

  45. Werner ED, Brodsky JL, McCracken AA. Proteasome-dependent endoplasmic reticulum-associated protein degradation: An unconventional route to a familiar fate. Proc Natl Acad Sci USA 1996;93:13797–13801.

    Article  PubMed  CAS  Google Scholar 

  46. Meusser B, Hirsch C, Jarosch E et al. ERAD: The long road to destruction. Nat Cell Biol 2005;7:766–772.

    Article  PubMed  CAS  Google Scholar 

  47. Hampton RY. ER-associated degradation in protein quality control and cellular regulation. Curr Opin Cell Biol 2002;14:476–482.

    Article  PubMed  CAS  Google Scholar 

  48. Hosokawa N, Wada I, Hasegawa K et al. A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep 2001;2:415–422.

    PubMed  CAS  Google Scholar 

  49. Molinari M, Galli C, Piccaluga V et al. Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER. J Cell Biol 2002;158:247–257.

    Article  PubMed  CAS  Google Scholar 

  50. Molinari M, Galli C, Vanoni O et al. Persistent glycoprotein misfolding activates the glucosidase II/UGT1-driven calnexin cycle to delay aggregation and loss of folding competence. Mol Cell 2005;20:503–512.

    Article  PubMed  CAS  Google Scholar 

  51. Trombetta ES, Helenius A. Conformational requirements for glycoprotein reglucosylation in the endoplasmic reticulum. J Cell Biol 2000;148:1123–1129.

    Article  PubMed  CAS  Google Scholar 

  52. Meunier L, Usherwood YK, Chung KT et al. A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol Biol Cell 2002;13:4456–4469.

    Article  PubMed  CAS  Google Scholar 

  53. Kuznetsov G, Chen LB, Nigam SK. Multiple molecular chaperones complex with misfolded large oligomeric glycoproteins in the endoplasmic reticulum. J Biol Chem 1997;272:3057–3063.

    Article  PubMed  CAS  Google Scholar 

  54. Feng W, Matzuk MM, Mountjoy K et al. The asparagine-linked oligosaccharides of the human chorionic gonadotropin beta subunit facilitate correct disulfide bond pairing. J Biol Chem 1995;270:11851–11859.

    Article  PubMed  CAS  Google Scholar 

  55. Tatu U, Helenius A. Interactions between newly synthesized glycoproteins, calnexin and a network of resident chaperones in the endoplasmic reticulum. J Cell Biol 1997;136:555–565.

    Article  PubMed  CAS  Google Scholar 

  56. Reddy P, Sparvoli A, Fagioli C et al. Formation of reversible disulfide bonds with the protein matrix of the endoplasmic reticulum correlates with the retention of unassembled Ig light chains. EMBO J 1996;15:2077–2085.

    PubMed  CAS  Google Scholar 

  57. Kamhi-Nesher S, Shenkman M, Tolchinsky S et al. A novel quality control compartment derived from the endoplasmic reticulum. Mol Biol Cell 2001;12:1711–1723.

    PubMed  CAS  Google Scholar 

  58. Frenkel Z, Shenkman M, Kondratyev M et al. Separate roles and different routing of calnexin and ERp57 in endoplasmic reticulum quality control revealed by interactions with asialoglycoprotein receptor chains. Mol Biol Cell 2004;15:2133–2142.

    Article  PubMed  CAS  Google Scholar 

  59. Melnick J, Dul JL, Argon Y. Sequential interaction of the chaperones BiP and Grp94 with immu-noglobulin chains in the endoplasmic reticulum. Nature 1994;370:373–375.

    Article  PubMed  CAS  Google Scholar 

  60. Rosser MF, Trotta BM, Marshall MR et al. Adenosine nucleotides and the regulation of GRP94-client protein interactions. Biochemistry 2004;43:8835–8845.

    Article  PubMed  CAS  Google Scholar 

  61. Shusta EV, Raines RT, Pluckthun A et al. Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. Nat Biotechnol 1998;16:773–777.

    Article  PubMed  CAS  Google Scholar 

  62. Mayer M, Kies U, Kammermeier R et al. BiP and PDI cooperate in the oxidative folding of antibodies in vitro. J Biol Chem 2000;275:29421–29425.

    Article  PubMed  CAS  Google Scholar 

  63. Bedard K, Szabo E, Michalak M et al. Cellular functions of endoplasmic reticulum chaperones calreticulin, calnexin, and ERp57. Int Rev Cytol 2005;245:91–121.

    PubMed  CAS  Google Scholar 

  64. Otteken A, Moss B. Calreticulin interacts with newly synthesized human immunodeficiency virus type 1 envelope glycoprotein, suggesting a chaperone function similar to that of calnexin. J Biol Chem 1996;271:97–103.

    Article  PubMed  CAS  Google Scholar 

  65. Peterson JR, Ora A, Van PN et al. Transient, lectin-like association of calreticulin with folding intermediates of cellular and viral glycoproteins. Mol Biol Cell 1995;6:1173–1184.

    PubMed  CAS  Google Scholar 

  66. Halaban R, Cheng E, Zhang Y et al. Aberrant retention of tyrosinase in the endoplasmic reticulum mediates accelerated degradation of the enzyme and contributes to the dedifferentiated phenotype of amelanotic melanoma cells. Proc Natl Acad Sci USA 1997;94:6210–6215.

    Article  PubMed  CAS  Google Scholar 

  67. Pipe SW, Morris JA, Shah J et al. Differential interaction of coagulation factor VIII and factor V with protein chaperones calnexin and calreticulin. J Biol Chem 1998;273:8537–8544.

    Article  PubMed  CAS  Google Scholar 

  68. Daniels R, Kurowski B, Johnson AE et al. N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Mol Cell 2003;11:79–90.

    Article  PubMed  CAS  Google Scholar 

  69. Van Leeuwen JE, Kearse KP. The related molecular chaperones calnexin and calreticulin differentially associate with nascent T cell antigen receptor proteins within the endoplasmic reticulum. J Biol Chem 1996;271:25345–25349.

    Article  PubMed  Google Scholar 

  70. Vassilakos A, Michalak M, Lehrman MA et al. Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin. Biochemistry 1998;37:3480–3490.

    Article  PubMed  CAS  Google Scholar 

  71. Danilczyk UG, Cohen-Doyle MF, Williams DB. Functional relationship between calreticulin, calnexin, and the endoplasmic reticulum luminal domain of calnexin. J Biol Chem 2000;275:13089–13097.

    Article  PubMed  CAS  Google Scholar 

  72. Wada I, Imai S, Kai M et al. Chaperone function of calreticulin when expressed in the endoplasmic reticulum as the membrane-anchored and soluble forms. J Biol Chem 1995;270:20298–20304.

    Article  PubMed  CAS  Google Scholar 

  73. Frickel EM, Riek R, Jelesarov I et al. TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc Natl Acad Sci USA 2002;99:1954–1959.

    Article  PubMed  CAS  Google Scholar 

  74. Pollock S, Kozlov G, Pelletier MF et al. Specific interaction of ERp57 and calnexin determined by NMR spectroscopy and an ER two-hybrid system. EMBO J 2004;23:1020–1029.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda M. Hendershot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Shimizu, Y., Hendershot, L.M. (2007). Organization of the Functions and Components of the Endoplasmic Reticulum. In: Csermely, P., Vígh, L. (eds) Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks. Advances in Experimental Medicine and Biology, vol 594. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39975-1_4

Download citation

Publish with us

Policies and ethics