Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 594))

Abstract

Trehalose is a disaccharide of glucose that is found at high concentrations in a wide variety of organisms that naturally survive drying in nature. Many years ago we reported that this molecule has the remarkable ability to stabilize membranes and proteins in the dry state. A mechanism for the stabilization rapidly emerged, and it was sufficiently attractive that a myth grew up about trehalose as a universal protectant and chemical chaperone. Many of the claims in this regard can be explained by what is now known about the physical properties of this interesting sugar. It is emerging that these properties may make it unusually useful in stabilizing intact cells in the dry state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crowe JH, Crowe LM, Jackson SA. Preservation and functional activity in lyophilized sarcoplasmic reticulum. Arch Biochem Biophys 1983; 220:477–484.

    PubMed  CAS  Google Scholar 

  2. Crowe M, Mouradian R, Crowe JH et al. Effects of carbohydrates on membrane stability at low water activities. Biochim Biophys Acta 1984; 769:141–150.

    PubMed  CAS  Google Scholar 

  3. Crowe JH, Crowe LM, Oliver AE et al. The trehalose myth revisited: Introduction to a symposium on stabilization of cells in the dry state. Cryobiology 2001; 43:89–105.

    PubMed  CAS  Google Scholar 

  4. Matsuo T. Trehalose protects corneal epithelial cells from death by drying. British J Ophthalmol 2001; 85:610–612.

    CAS  Google Scholar 

  5. Norcia M. Compositions and methods for wound management. Off Gaz US Patent and Trademark Office 2000; 1232:424–448.

    Google Scholar 

  6. Higashiyama T. Novel functions and applications of trehalose. Pure Appl Chem 2002; 74:1263–1269.

    CAS  Google Scholar 

  7. Benaroudj N, Lee DL, Goldberg AL. Trehalose Accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 2001; 276:24261–24267.

    PubMed  CAS  Google Scholar 

  8. Chen Q, Haddad GG. Role of trehalose phosphate synthase and trehalose during hypoxia: From flies to mammals. J Exp Biol 2004; 207:3125–3129.

    PubMed  CAS  Google Scholar 

  9. Neta T, Takada K, Hirasawa M. Low-cariogenicity of trehalose as a substrate. Dent 2000; 28:571–6.

    CAS  Google Scholar 

  10. Gimeno-Alcañiz JV, Pèrez-Ortìn JE, Matallana E. Differential pattern of trehalose accumulation in wine yeast strains during the microvinification process. Biotechnology Lett 1999; 21:271–274.

    Google Scholar 

  11. Pataro C, Guerra JB, Gomes FCO et al. Trehalose accumulation, invertase activity and physiological characteristics of yeasts isolated from 24 h fermentative cycles during the production of artisanal Brazilian cachaça. Brazilian J Microbiol 2002; 33:202–208.

    CAS  Google Scholar 

  12. Komes D, Lovri T, Kovaevi Gani T et al. Study of trehalose addition on aroma retention in dehydrated strawberry puree. Food Technol Biotechnol 2003; 41:111–119.

    CAS  Google Scholar 

  13. Garg AK, Kim JK, Owens TG et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Nat Acad Sci 2002; 99:15898–15903.

    PubMed  CAS  Google Scholar 

  14. Nishizaki Y, Yoshizane C, Toshimori Y et al. Disaccharide-trehalose inhibits bone resorption in ovariectomized mice. Nutr Res 2000; 20:653–664.

    CAS  Google Scholar 

  15. Yoshizane C, Arai N, Arai C et al. Trehalose suppresses osteoclast differentiation in ovariectomized mice: Correlation with decreased in vitro interleukin-6 production by bone marrow cells. Nutr Res 2000; 20:1485–1491.

    CAS  Google Scholar 

  16. Tanaka M, Machida Y, Niu S et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 2004; 10:148–54.

    PubMed  CAS  Google Scholar 

  17. Couzin J. Huntington’s disease. Unorthodox clinical trials meld science and care. Science 2004; 304:816–817.

    PubMed  Google Scholar 

  18. Crowe JH, Crowe LM, Carpenter JF et al. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J 1987; 242:1–10.

    PubMed  CAS  Google Scholar 

  19. Crowe JH, Crowe LM. Preservation of liposomes by freeze drying. In: Gregoriadis G, ed. Liposome Technology, 2nd ed. CRC Press Inc., 1992.

    Google Scholar 

  20. Hays LM, Crowe JH, Wolkers W et al. Factors affecting leakage of trapped solutes from phospholipid vesicles during thermotropic phase transitions. Cryobiology 2001; 42:88–102.

    PubMed  CAS  Google Scholar 

  21. Crowe JH, Crowe LM. Factors affecting the stability of dry liposomes. Biochim Biophys Acta 1988; 939:327–334.

    PubMed  CAS  Google Scholar 

  22. Crowe JH, Carpenter JF, Crowe LM. The role of vitrification in anhydrobiosis. Annu Rev Physiol 1998; 6:73–103.

    Google Scholar 

  23. Crowe JH, Crowe LM, Chapman D. Preservation of membranes in anhydrobiotic organisms: The role of trehalose. Science 1984; 223:701–703.

    CAS  Google Scholar 

  24. Allison SD, Manning MC, Randolph TW et al. Optimization of storage stability of lyophilized actin using combinations of disaccharides and dextran. J Pharm Sci 2000; 89:199–214.

    PubMed  CAS  Google Scholar 

  25. Anchordoquy TJ, Izutsu KI, Randolph TW et al. Maintenance of quaternary structure in the frozen state stabilizes lactate dehydrogenase during freeze-drying. Arch Biochem Biophys 2001; 390:35–41.

    PubMed  CAS  Google Scholar 

  26. Cleland JL, Lam X, Kendrick B et al. A specific molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody. J Pharm Sci 2000; 90:310–321.

    Google Scholar 

  27. Belton PS, Gil AH. IR and Raman spectroscopic studies of the interaction of trehalose with hen egg lysozyme. Biopolymers 1994; 34:957–961.

    PubMed  CAS  Google Scholar 

  28. Cottone G, Cicotti G, Cordone L. Protein-trehalose-water structures in trehalose coated carboxy-myoglobn. J Cell Phys 2002; 117:9862–9866.

    CAS  Google Scholar 

  29. Lins RD, Pereira CS, Hunenberger PH. Trehalose-protein interactions in aqueous solutions. Proteins 2004; 55:177–186.

    PubMed  CAS  Google Scholar 

  30. Sun WQ, Leopold AC. Cytoplasmic vitrification and survival of anhydrobiotic organisms. Comp. Biochem Physiol 1997; 117A:327–333.

    CAS  Google Scholar 

  31. Sun WQ, Leopold AC, Crowe LM et al. Stability of dry liposomes in sugar glasses. Biophys J 1996; 70:1769–1776.

    PubMed  CAS  Google Scholar 

  32. Lee CWB, Waugh JS, Griffin RG. Solid-state NMR study of trehalose/1,2-dipalmitoyl-sn-phosphatidylcholine interactions. Biochemistry 1986; 25:3737–3742.

    PubMed  CAS  Google Scholar 

  33. Nakagaki M, Nagase H, Ueda H. Stabilization of the lamellar structure of phosphatidylcholine by complex-formation with trehalose. J Mem Sci 1992; 73:173–180.

    CAS  Google Scholar 

  34. Tsvetkova NM, Phillips BL, Crowe LM et al. Effect of sugars on headgroiup mobility in freeze-dried dipalmitoylphosphatidylcholine bilayers: Solid-state P-31 NMR and FTIR studies. Biophys J 1998; 75:2947–2955.

    PubMed  CAS  Google Scholar 

  35. Luzardo MD, Amalfa F, Nunez AM et al. Effect of trehalose and sucrose on the hydration and dipole potential of lipid bilayers. Biophys J 2000; 78:2452–2458.

    PubMed  CAS  Google Scholar 

  36. Ricker JV, Tsvetkova NM, Wolkers WF et al. Trehalose maintains phase separation in an air-dried binary lipid mixture. Biophys J 2003; 84:3045–3051.

    PubMed  CAS  Google Scholar 

  37. Chandrasekhar I, Gaber BP. Stabilization of the biomembrane by small molecules: Interaction of trehalose with the phospholipid bilayer. J Biomol Struct Dyn 1988; 5:1163–1171.

    PubMed  CAS  Google Scholar 

  38. Rudolph BR, Chandrasekhar I, Gaber BP et al. Molecular modeling of saccharide-lipid interactions. Chem Phys Lipids 1990; 53:243–261.

    CAS  Google Scholar 

  39. Sum AK, Faller F, de Pablo JJ. Molecular simulation of phospholipid bilayers and insights of the interactions with disaccharides. Biophys J 2003; 85:2830–2844.

    PubMed  CAS  Google Scholar 

  40. Pereira CS, Lins RD, Chandrasekhar I et al. Interaction of the disaccharide trehalose with a phospholipid bilayer: A molecular dynamics study. Biophys J 2004; 86:2272–2285.

    Google Scholar 

  41. Brown DA. Seeing is believing: Visualization of rafts in model membranes. Proc Nat Acad Sci 2001; 98:10517.

    PubMed  CAS  Google Scholar 

  42. Brown DA, London E. Structure and origin of ordered lipid domains in biological membranes. J Mem Biol 1998; 164:103–114.

    CAS  Google Scholar 

  43. London E. Insights into lipid raft structure and formation from experiments in model membranes. Curr Opinion Struct Biol 2002; 12:480.

    CAS  Google Scholar 

  44. Horejs V. Membrane rafts in immunoreceptor signaling: New doubts, new proofs? Trends Immunol 2002; 23:562–564.

    Google Scholar 

  45. Heerklotz H. Triton promotes domain formation in lipid raft mixtures. Biophys J 2002; 83:2693–2697.

    PubMed  CAS  Google Scholar 

  46. Shogomori H, Brown DA. Use of detergents to study membrane rafts: The good, the bad, and the ugly. Biol Chem 2003; 384:1259–1263.

    PubMed  CAS  Google Scholar 

  47. Draber P, Draberova L. Lipid rafts in mast cell signaling. Mol Immunol 2002; 38:1247–1253.

    PubMed  CAS  Google Scholar 

  48. Horejsi V. The roles of membrane microdomains (rafts) in T cell activation. Immunol Rev 2003; 191:148–154.

    PubMed  CAS  Google Scholar 

  49. FukI IV, Meyer ME, Williams KJ. Transmembrane and cytoplasmic domains of syndecan mediate a multi-step endocytic pathway involving detergent-insoluble membrane rafts. Biochem J 2001; 351:607–613.

    Google Scholar 

  50. Ono A, Freed EO. Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proceedings of the National Academy of Sciences 2001; 98:13925–13929.

    CAS  Google Scholar 

  51. Vincent S, Gerlier D, Manié SN. Measles virus assembly within membrane rafts. J Virology 2000; 74:9911–9916.

    PubMed  CAS  Google Scholar 

  52. Gil T, Ipsen JH, Mouritsen OG et al. Theoretical analysis of protein organization in lipid membranes. Biochim Biophys Acta 1998; 1376:245–262.

    PubMed  CAS  Google Scholar 

  53. Killian JA. Hydrophobic mismatch between proteins and lipids in membranes. Biochim Biophys Acta 1998; 137:401–416.

    Google Scholar 

  54. Leidy C, Gousset K, Ricker JV et al. Lipid phase behavior and stabilization of domains in membranes of platelets. Cell Biochem Biophys 2004; 40:123–135.

    PubMed  CAS  Google Scholar 

  55. Mabrey S, Sturtevant JM. Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. Proc Nat Acad Sci 1976; 73:3862–3879.

    PubMed  CAS  Google Scholar 

  56. Mabrey S, Mateo PL, Sturtevant JM. High-sensitivity scanning calorimetric study of mixtures of cholesterol with dimyristoyl-and dipalmitoylphosphatidylcholines. Biochemistry 1978; 17:2464–2468.

    PubMed  CAS  Google Scholar 

  57. Womersley C. Dehydration survival and anhydrobiotic potential of entomopathogenic nematodes. In: Gaugler R, Kaya HK, eds. Entomopathogenic Nematodes in Biological Control. Boca Raton, FL: CRC Press, 1990:117–130.

    Google Scholar 

  58. Westh P, Ramløv H. Trehalose accumulation in the tardigrade Adorybiotus coronifer during anhydrobiosis. J Exp Zool 1991; 258:303–311.

    CAS  Google Scholar 

  59. Lapinski J, Tunnacliffe A. Anhydrobiosis without trehalose in bdelloid rotifers. FEBS Lett 2003; 553:387–390.

    PubMed  CAS  Google Scholar 

  60. Caprioli M, Katholm AK, Melone G et al. Trehalose in desiccated rotifers: A comparison between a bdelloid and a monogonont species. Comp Biochem Physiol A 2004; 139:527–532.

    Google Scholar 

  61. Tunnacliffe A, Lapinski J. Resurrecting Van Leeuwenhoek’s rotifers: A reappraisal of the role of disaccharides in anhydrobiosis. Philos Trans R Soc Lond B 2003; 358:1755–1771.

    CAS  Google Scholar 

  62. Crowe JH, Oliver AE, Hoekstra FA et al. Stabilization of dry membranes by mixtures of hydroxyethyl starch and glucose: The role of vitrification. Cryobiology 1997; 3:20–30.

    Google Scholar 

  63. Hill DR, Keenan TW, Helm RF et al. Extracellular polysaccharide of Nostoc commune (Cyanobacteria) inhibits fusion of membrane vesicles during desiccation. J Applied Phycol 1997; 9:237–248.

    Google Scholar 

  64. Buitink J, Walters-Vertucci C, Hoekstra FA et al. Calorimetric properties of dehydrating pollen: Analysis of a desiccation-tolerant and an-intolerant species. Plant Physiol 1996; 111:235–242.

    PubMed  CAS  Google Scholar 

  65. Hincha DK, Hellwege EM, Meyer AG et al. Plant fructans stabilize phosphatidylcholine liposomes during freeze-drying. Eur J Biochem 2000; 267:535–540.

    PubMed  CAS  Google Scholar 

  66. Vereyken IJ, Chupin V, Hoekstra FA et al. The effect of fructan on membrane lipid organization and dynamics in the dry state. Biophys J 2003; 84:3759–3766.

    PubMed  CAS  Google Scholar 

  67. Hincha DK, Zuther E, Heyer AG. The preservation of liposomes by rafflnose family oligosaccha-rides during drying is mediated by effects on fusion and lipid phase transitions. Biochim Biophys Acta 2003; 1612:172–177.

    PubMed  CAS  Google Scholar 

  68. Hincha DK, Hagemann M. Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms. Biochem J 2004; 383:277–83.

    PubMed  CAS  Google Scholar 

  69. Hoekstra FA, Golovina EA. The role of amphiphiles. Comp Biochem Physiol 2002; 131A:527–533.

    CAS  Google Scholar 

  70. Goodrich RP, Crowe JH, Crowe LM et al. Alteration in membrane surfaces induced by attachment of carbohydrates. Biochemistry 1991; 30:2313–2318.

    Google Scholar 

  71. Popova AV, Hincha DK. Effects of the sugar headgroup of a glyoglycerolipid on the phase behavior of phospholipid model membranes in the dry state. Glycobiology 2005; 15:1150–1155.

    PubMed  CAS  Google Scholar 

  72. Leslie SB, Israeli E, Lighthart B et al. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Econ Env Microbiol 1995; 61:3592–3597.

    CAS  Google Scholar 

  73. Esteves MI, Quintilio W, Sato RA et al. Stabilisation of immunoconjugates by trehalose. Biotechnol Lett 2001; 22:417–420.

    Google Scholar 

  74. Crowe LM, Reid DS, Crowe JH. Is trehalose special for preserving dry biomaterials? Biophys J 1996; 71:2087–2093.

    PubMed  CAS  Google Scholar 

  75. Green JL, Angell CA. Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. J Phys Chem 1989; 93:2880–2882.

    CAS  Google Scholar 

  76. Li S, Patapoff TW, Overcashier et al. Effects of reducing sugars on the chemical stability of human relaxin in the lyophilized state. J Pharm Sci 1996; 85:873–877.

    PubMed  CAS  Google Scholar 

  77. O’Brien J. Stability of trehalose, sucrose and glucose to nonenzymatic browning in model systems. J Food Sci 1996; 61:679–682.

    CAS  Google Scholar 

  78. Schebor C, Burin L, del Pilar Bueras M et al. Stability to hydrolysis and browning of trehalose, sucrose and raffinose in low-moisture systems in relation to their use as protectants of dry biomaterials. Lebensm-Wiss u-Technol 1999; 32:481–485.

    CAS  Google Scholar 

  79. Buitink J, van den Dries IJ, Hoekstra FA et al. High critical temperature above Tg may contribute to the stability of biological systems. Biophys J 2000; 79:1119–1128.

    PubMed  CAS  Google Scholar 

  80. Buitink J, Heminga MA, Hoekstra FA. Is there a role for oligosaccharides in seed longevity? An assessment of intracellular glass stability. Plant Physiology 2000; 122:1217–1224.

    PubMed  CAS  Google Scholar 

  81. Buitink J, Leprince O. Glass formation in plant anhydrobiotes: Survival in the dry state. Cryobiology 2004; 48:215–228.

    PubMed  CAS  Google Scholar 

  82. Koste KL. Glass formation and desiccation tolerance in seeds. Plant Physiol 1991; 96:302–304.

    Google Scholar 

  83. Wolkers WF, Tetteroo FAA, Alberda M et al. Changed properties of the cytoplasmic matrix associated with desiccation tolerance of dried carrot somatic embryos. An in situ Fourier transform infrared spectroscopic study. Plant Physiol 1999; 120:153–163.

    PubMed  CAS  Google Scholar 

  84. Wolkers WF, Alberda M, Koornneef M et al. Properties of proteins and the glassy matrix in maturation-defective mutant seeds of Arabidopsis thaliana. Plant J 1998; 16:133–143.

    PubMed  CAS  Google Scholar 

  85. Wolkers WF, Oldenhof H, Alberda M et al. A Fourier transform infrared study of sugar glasses: Application to anhydrobiotic higher plant cells. Biochim Biophys Acta 1998; 1379:83–96.

    PubMed  CAS  Google Scholar 

  86. Walters C, Reid JL, Walker-Simmons MK. Heat soluble proteins extracted from wheat embryos have tightly bound sugars and unusual hydration properties. Seed Sci Res 1997; 7:125–134.

    CAS  Google Scholar 

  87. Eroglu A, Russo MJ, Bieganski R et al. Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat Biotechnol 2000; 18:163–167.

    PubMed  CAS  Google Scholar 

  88. Guo NI, Puhlev DR, Brown J et al. Trehalose expression confers desiccation tolerance on human cells. Nat Biotechnol 2000; 18:168–171.

    PubMed  CAS  Google Scholar 

  89. Wolkers WF, Walker NJ, Tablin F et al. Human platelets loaded with trehalose survive freeze-drying. Cryobiology 2001; 42:79–87.

    PubMed  CAS  Google Scholar 

  90. Oliver AE, Jamil K, Crowe JH et al. Loading human mesenchymal stem cells with trehalose by fluid-phase endocytosis. Cell Preservation Tech 2004; 2:35–49.

    CAS  Google Scholar 

  91. Lloyd JB. Lysosome membrane permeability: Implications for drug delivery. Advanced Drug Delivery Reviews 2000; 41:189–200.

    PubMed  CAS  Google Scholar 

  92. Tablin F, Oliver AE, Walker NJ et al. Membrane phase transitions of intact human platelets: Correlation with cold-induced activation. J Cell Physiol 1996; 168:305–313.

    PubMed  CAS  Google Scholar 

  93. Tablin F, Wolkers WF, Walker NJ et al. Membrane reorganization during chilling: Implications for long term storage. Cryobiology 2001; 43:114–123.

    PubMed  CAS  Google Scholar 

  94. Oliver AE, Tablin F, Walker NJ et al. The internal calcium concentration of human platelets increases during chilling. Biochim Biophys Acta 1999; 1416:349–60.

    PubMed  CAS  Google Scholar 

  95. Crowe JH, Tablin F, Tsvetkova NM et al. Are lipid phase transitions responsible for chilling damage in human platelets? Cryobiology 1999; 38:180–191.

    PubMed  CAS  Google Scholar 

  96. Crowe JH, Tablin F, Wolkers WF et al. Stabilization of membranes in human platelets freeze-dried with trehalose. Chem Phys Lipids 2003; 122:41–52.

    PubMed  CAS  Google Scholar 

  97. Tsvetkova NM, Walker NJ, Crowe JH et al. Lipid phase separation correlates with activation in platelets during chilling. Mol Mem Biol 2001; 17:209–218.

    Google Scholar 

  98. Auh JH, Wolkers WF, Looper SA et al. Calcium mobilization in freeze-dried human platelets. Cell Preservation Tech 2004; 2:180–187.

    CAS  Google Scholar 

  99. Ma X, Jamil K, MacRae TH et al. A small stress protein acts synergistically with trehalose to confer desiccation tolerance on mammalian cells. Cryobiology 2005; 51:15–28.

    PubMed  CAS  Google Scholar 

  100. Clegg JS, Jackson SA, Warner AH. Extensive intracellular translocations of a major protein accompany anoxia in embryos of Artemia franciscana. Exp Cell Res 1994; 212:77–83.

    PubMed  CAS  Google Scholar 

  101. Liang P, Amons R, Clegg HS et al. Purification, structure and in vitro molecular-chaperone activity of Artemia p26, a small heat-shock/alpha-crystallin protein. Eur J Biocheml 997; 243:225–32.

    Google Scholar 

  102. Liang P, Amons R, Clegg HS et al. Molecular characterization of a small heat shock/alpha-crystallin protein in encysted Artemia embryos. J Biol Chem 1997; 272:19051–19058.

    PubMed  CAS  Google Scholar 

  103. Liang P, MacRae TH. The synthesis of a small heat shock/oc-crystallin protein in Artemia and its relationship to stress tolerance during development. Devel Biol 1999; 207:445–456.

    CAS  Google Scholar 

  104. MacRae TH. Molecular chaperones, stress resistance and development in Artemia franciscana. Semin Cell Dev Biol 2003; 14:251–258.

    PubMed  CAS  Google Scholar 

  105. Willsie JK, Clegg JS. Nuclear p26, a small heat shock/α-crystallin protein, and its relationship to stress resistance in Artemia franciscana embryos. J Exp Biol 2001; 204:2339–2350.

    PubMed  CAS  Google Scholar 

  106. Day RM, Gupta JS, MacRae TH. A small heat shock/alpha-crystallin protein from encysted Artemia embryos suppresses tubulin denaturation. Cell Stress and Chaperones 2003; 8:183–193.

    PubMed  CAS  Google Scholar 

  107. Sun Y, Mansour M, Crack JA et al. Oligomerization, chaperone activity, and nuclear localization of p26, a small heat shock protein from Artemia franciscana. J Biol Chem 2004; 279:39999–40006.

    PubMed  CAS  Google Scholar 

  108. Viner RI, Clegg JS. Influence of trehalose on the molecular chaperone activity of p26, a small heat shock/α-crystallin protein. Cell Stress and Chaperones 2001; 6:126–135.

    PubMed  CAS  Google Scholar 

  109. Collins CH, Clegg JS. A small heat-shock protein, p26, from the crustacean Artemia protects mammalian cells (Cos-1) against oxidative damage. Cell Biol Intl 2004; 28:449–455.

    CAS  Google Scholar 

  110. Singer MA, Lindquist S. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1998; 1:639–648.

    PubMed  CAS  Google Scholar 

  111. Singer MA, Lindquist S. Thermotolerance in Saccharomyces cerevisiae: The Yin and Yang of trehalose. Trends Biotech 1998; 1:460–468.

    Google Scholar 

  112. Ristic Z, Williams G, Yang G et al. Dehydration, damage to cellular membranes, and heat-shock proteins in maize hybrids from different climates. J Plant Physiol 1996; 149:424–432.

    CAS  Google Scholar 

  113. Hayward SAL, Rinehart JP, Denlinger DL. Desiccation and rehydration elicit distinct heat shock protein transcript responses in the flesh fly pupae. J Exp Biol 2004; 207:963–971.

    PubMed  CAS  Google Scholar 

  114. Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 2002; 295:1852–1858.

    PubMed  CAS  Google Scholar 

  115. Barral JM, Broadley SA, Schaffar G et al. Roles of molecular chaperones in protein misfolding diseases. Sem Cell Devel Biol 2004; 15:17–29.

    CAS  Google Scholar 

  116. Trent JD, Kagawa HK, Paavola CD et al. Intracellular localization of a group II chaperonin indicates a membrane-related function. Proc Natl Acad Sci 2003; 100:15589–15594.

    PubMed  CAS  Google Scholar 

  117. Torok Z, Horvath I, Goloubinoff P et al. Evidence for a liposhaperonin: Association of active protein-folding GroESLj oligomers with lipids can stabilize membranes under heat shock conditions. Proc Natl Acad Sci 1997; 94:2192–2197.

    PubMed  CAS  Google Scholar 

  118. Torok Z, Tsvetkova NM, Balogh G et al. Heat shock protein coinducers with no effect on protein denaturation specifically modulate the membrane lipid phase. Proc Nat Acad Sci 2003; 100:3131–3136.

    PubMed  CAS  Google Scholar 

  119. Torok Z, Goloubinoff P, Horvath I et al. Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc Natl Adad Sci 2001; 98:3098–3103.

    CAS  Google Scholar 

  120. Tsvetkova NM, Horvath I, Torok Z et al. Small heat-shock proteins regulate membrane lipid polymorphism. Proc Natl Acad Sci 2002; 99:13504–13509.

    PubMed  CAS  Google Scholar 

  121. Vigh L, Maresca B, Harwood JL. Does the membrane’s physical state control the expression of heat shock and other genes? Trends Bio Sci 1998; 23:369–374.

    CAS  Google Scholar 

  122. Horvath I, Glatz A, Varvasovszki V et al. Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: Identification of hsp17 as a “fluidity gene”. Proc Nat Acad Sci 1998; 95:3513–3518.

    PubMed  CAS  Google Scholar 

  123. Beere HM, Green DR. Stress management-Heat shock protein-70 and the regulation of apoptosis. Trends Cell Biol 2001; 11:6–10.

    PubMed  CAS  Google Scholar 

  124. Concannon CG, Gorman AM, Samali A. On the role of Hsp27 in regulating apoptosis. Apoptosis 2003; 8:61–70.

    PubMed  CAS  Google Scholar 

  125. Samali A, Orrenius S. Heat shock proteins: Regulators of stress response and apoptosis. Cell Stress and Chaperones 1998; 3:228–236.

    PubMed  CAS  Google Scholar 

  126. Downs CA, Jones LR, Heckathorn SA. Evidence for a novel set of small heat-shock proteins that associates with the mitochondria of murine PC12 cells and protects NADH:ubiquinone oxidoreductase from heat and oxidative stress. Arch Biochem Biophys 1999; 365:344–350.

    PubMed  CAS  Google Scholar 

  127. Gill RR, Gbur CJ, Fisher BJ et al. Heat shock provides delayed protection against oxidative injury in cultured human umbilical nein endothelial cells. J Molec Cell Cardiol 1998; 30:2739–2749.

    CAS  Google Scholar 

  128. Park YM, Han MY, Blackburn RV et al. Overexpression of HSP25 reduces the level of TNFalpha-induced oxidative DNA damage biomarker, 8-hydroxy-2′-deoxyguanosine, in L929 cells. J Cell Physiol 1998; 174:27–34.

    PubMed  CAS  Google Scholar 

  129. Jamil K, Crowe JH, Tablin F et al. Arbutin enhances recovery and osteogenic differentiation in dried and rehydrated human mesenchymal stem cells. Cell Preservation Tech 2005; 3:244–255.

    CAS  Google Scholar 

  130. Oliver AE, Hincha DK, Crowe JH. Looking beyond sugars: The role of amphiphilic solutes in preventing adventitious reactions in anhydrobiotes at low water contents. Comp Biochem Physiol 2002; 131A:515–525.

    CAS  Google Scholar 

  131. Crowe JH. Anhydrobiosis: An unsolved problem. Am Nat 1971; 105:563–573.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Crowe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Crowe, J.H. (2007). Trehalose As a “Chemical Chaperone”. In: Csermely, P., Vígh, L. (eds) Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks. Advances in Experimental Medicine and Biology, vol 594. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39975-1_13

Download citation

Publish with us

Policies and ethics