Skip to main content

Diamondoids as Molecular Building Blocks for Nanotechnology

  • Chapter
Book cover Molecular Building Blocks for Nanotechnology

Part of the book series: Topics in Applied Physics ((TAP,volume 109))

Abstract

Two different methods are envisioned for nanotechnology to build nanostructured systems, components, and materials: One method is named the “top-down” approach and the other method is named the “bottom-up” approach [1,2]. In the top-down approach the idea is to miniaturize the macroscopic structures, components, and systems towards a nanoscale of the same. In the bottom-up approach the atoms and molecules constituting the building blocks are the starting point to build the desired nanostructure [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mansoori, G.A.: Advances in atomic & molecular nanotechnology. In Nanotechnology: The Emerging Cutting-Edge Technology; Sep–Oct 2002. United Nations Tech Monitor; 2002: 53–59.

    Google Scholar 

  2. Siegel, R.W., Hu, E., Roco, M.C.: Nanostructure Sci. and Technology—A Worldwide Study. Prepared under the guidance of the IWGN, NSTC. WTEC, Loyola College in Maryland; 1999.

    Google Scholar 

  3. La Van, D.A., McGuire, T., Langer, R.: Small-scale systems for in vivo drug delivery. Nature Biotechnol 2003, 21:1184–1191.

    Article  CAS  Google Scholar 

  4. Merkle, R.C.: Biotechnology as a route to nanotechnology. Trends Biotechnol 1999, 17:271–274.

    Article  CAS  Google Scholar 

  5. Merkle, R.C.: Nanotechnology 2000, 11:89.

    Article  CAS  Google Scholar 

  6. Molecular building blocks and development strategies for molecular nanotechnology [http://www.zyvex.com/nanotech/mbb/mbb.html]

    Google Scholar 

  7. Drexler, K.E.: Building molecular machine systems. Trends Biotechnol 1999, 17: 5–7.

    Article  CAS  Google Scholar 

  8. Bogunia-Kubik, K. and Sugisaka, M.: From molecular biology to nanotechnology and nanomedicine. Biosystems 2002, 65:123–138.

    Article  CAS  Google Scholar 

  9. Freitas, R.A.: Respirocytes: High performance artificial nanotechnology red blood cell. Nanotechnol 1996, 2:8–13.

    Google Scholar 

  10. Freitas, R.A., Jr.: Exploratory design in medical nanotechnology: a mechanical artificial red cell. Artifficial Cells, Blood Substitutes Biotechnol 1998, 26:411–430.

    Article  CAS  Google Scholar 

  11. Mansoori, G.A.: Principles of Nanotechnology: Molecular-Based Study of Condensed Matter in Small Systems. World Scientific, Singapore; 2005.

    Google Scholar 

  12. Dahl, J.E., Liu, S.G., and Carlson, R.M.: Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science 2003, 299:96–99.

    Article  CAS  Google Scholar 

  13. Vazquez Gurrola, D., Excobedo, J., and Mansoori, G.A.: Characterization of crude oils from southern Mexican oilfields. In Proceedings of the EXITEP 98, International Petroleum Technology Exhibition, Placio de Los Deportes; 15th–18th November 1998; Mexico City, Mexico, D.F.; 1998.

    Google Scholar 

  14. Rollmann, L.D., Green, L.A., Bradway, R.A., and Timken, H.K.C.: Adamantanes from petroleum with zeolites. Catalysis Today 1996, 31:163–169.

    Article  CAS  Google Scholar 

  15. Kabo, G.J., Blokhin, A.V., Charapennikau, M.B., Kabo, A.G., and Sevruk, V.M.: Thermodynamic properties of adamantane and the energy states of molecules in plastic crystals for some cage hydrocarbons. Thermochim Acta 2000, 345:125–133.

    Article  CAS  Google Scholar 

  16. Vazquez, D. and Mansoori, G.A.: Identification and measurement of petroleum precipitates. J Petroleum Sci Eng 2000, 26:49–55.

    Article  CAS  Google Scholar 

  17. Mansoori, G.A.: Modeling of asphaltene and other heavy organic depositions. J Petroleum Sci Eng 1997, 17:101–111.

    Article  CAS  Google Scholar 

  18. Mansoori, G.A., Assoufid, L., George, T.F., and Zhang, G.: Measurement, simulation and prediction of intermolecular interactions and structural characterization of organic nanostructures. In Proceedings of the Conference on Nanodevices and Systems, Nanotech 2003; February 23–27; San Francisco. 2003

    Google Scholar 

  19. Desiraju, G.R.: The supramolecular concept as a bridge between organic, inorganic and organometallic crystal chemistry. J Mol Structure 1996, 374:191–198.

    Article  CAS  Google Scholar 

  20. Reiser, J., McGregor, E., Jones, J., Enick, R., and Holder, G.: Adamantane and diamantane; phase diagrams, solubilities, and rates of dissolution. Fluid Phase Equilibria 1996, 117:160–167.

    Article  CAS  Google Scholar 

  21. Navratilova, M. and Sporka, K.: Synthesis of adamantane on commercially available zeolitic catalysts. Appl Catalysis A: Gen 2000, 203:127–132.

    Article  CAS  Google Scholar 

  22. Mckervey, M.A.: Synthetic approaches to large diamondoid hydrocarbons. Tetrahedron 1980, 36:971–992.

    Article  CAS  Google Scholar 

  23. Hopf, H.: Classics in Hydrocarbon Chemistry: Syntheses, Concepts, Perspectives. Weinheim: Wiley-VCH, 2000.

    Google Scholar 

  24. Shibuya, M., Taniguchi, T., Takahashi, M., and Ogasawara, K.: Chiral modification of adamantane. Tetrahedron Lett 2002, 43:4145–4147.

    Article  CAS  Google Scholar 

  25. Zones, S.I., Nakagawa, Y., Lee, G.S., Chen, C.Y., and Yuen, L.T.: Searching for new high silica zeolites through a synergy of organic templates and novel inorganic conditions. Micropor Mesopor Mater 1998, 21:199–211.

    Article  CAS  Google Scholar 

  26. Meador, M.A.: Annu Rev Mater Sci 1998, 28:599.

    Article  CAS  Google Scholar 

  27. Hardman, J.G. and Limbird, L.E.: Goodman & Gilman's The pharmacological basis of Therapeutics. 10th edition. New York: McGraw-Hill, 2001.

    Google Scholar 

  28. Kazimierczuk, Z., Gorska, A., Switaj, T., and Lasek, W.: Adamantylaminopyrimidines and -pyridines are potent inducers of tumor necrosis factor-α J. Bioorganic Medicinal Chem Lett 2001, 11:1197–1200.

    Article  CAS  Google Scholar 

  29. Yaw-Terng, C. and Jane-Jen, W.: Synthesis of 1,6-Diaminodiamantane. Tetrahedron Lett 1995, 36:5805–5806.

    Article  Google Scholar 

  30. Stamatiou, G., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G.B., Neyts, J., and De Clercq, E.: Novel 3-(2-Adamantyl)pyrrolidines with potent activity against influenza A virus—identification of aminoadamantane derivatives bearing two pharmacophoric amine groups. Bioorganic Medicinal Chem Lett 2001, 11:2137–2142.

    Article  CAS  Google Scholar 

  31. Samoilova, M.V., Buldakova, S.L., Vorobjev, V.S., Sharonova, I.N., and Magazanik, L.G.: The open channel blocking drug, IEM-1460, reveals functionally distinct α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors in rat brain neurons. Neuroscience 1999, 94:261–268.

    Article  CAS  Google Scholar 

  32. Bolshakov, K.V., Tikhonov, D.B., Gmiro, V.E., and Magazanik, L.G.: Different arrangement of hydrophobic and nucleophilic components of channel binding sites in N-methyl-d-aspartate and AMPA receptors of rat brain is revealed by channel blockade. Neurosci Lett 2000, 291:101–104.

    Article  CAS  Google Scholar 

  33. Buldakova, S.L., Vorobjev, V.S., Sharonova, I.N., Samoilova, M.V., and Magazanik, L.G.: Characterization of AMPA receptor populations in rat brain cells by the use of subunit-specific open channel blocking drug, IEM-1460. Brain Res 1999, 846:52–58.

    Article  CAS  Google Scholar 

  34. Rammes, G., Rupprecht, R., Ferrari, U., Zieglgänsberger, W., Parsons, C.G.: The N-methyl-d-aspartate receptor channel blockers memantine, MRZ 2/579 and other amino-alkyl-cyclohexanes antagonise 5-HT3 receptor currents in cultured HEK-293 and N1E-115 cell systems in a non-competitive manner. Neuroscience Lett 2001, 306:81–84.

    Article  CAS  Google Scholar 

  35. Flynn, D.L., Becker, D.P., Spangler, D.P., Nosal, R., Gullikson, G.W., Moummi, C., and Yang, D.-C.: New aza(nor)adamantanes are agonists at the newly identified serotonin 5-HT4 receptor and antagonists at the 5-HT3 receptor. Bioorganic Medicinal Chem Lett 1992, 2:1613–1618.

    Article  CAS  Google Scholar 

  36. Baxter, A., Bent, J., Bowers, K., Braddock, M., Brough, S., Fagura, M., Lawson, M., McInally, T., Mortimore, M., and Robertson, M.: Hit-to-Lead studies: The discovery of potent adamantane amide P2X7 receptor antagonists. Bioorganic Medicinal Chem Lett 2003, 13:4047–4050.

    Article  CAS  Google Scholar 

  37. Zoidis, G., Papanastasiou, I., Dotsikas, I., Sandoval, A., Dos Santos, R.G., Papadopoulou-Daifoti, Z., Vamvakides, A., Kolocouris, N., and Felix, R.: The novel GABA adamantane derivative (AdGABA): design, synthesis, and activity relationship with gabapentin. Bioorganic Medicinal Chem 2005, 13:2791–2798.

    Article  CAS  Google Scholar 

  38. Shen, C., Bullens, D., Kasran, A., Maerten, P., Boon, L., Aerts, J.M.F.G., van Assche, G., Geboes, K., Rutgeerts, P., and Ceuppens, J.L.: Inhibition of glycolipid biosynthesis by N-(5-adamantane-1-yl-methoxy-pentyl)-deoxynojirimycin protects against the inflammatory response in hapten-induced colitis. Int Immunopharmacol 2004, 4:939–951.

    Article  CAS  Google Scholar 

  39. Reissmann, S., Pineda, F., Vietinghoff, G., Werner, H., Gera, L., Stewart, J.M., and Paegelow, I.: Structure activity relationships for bradykinin antagonists on the inhibition of cytokine release and the release of histamine. Peptides 2000, 21:527–533.

    Article  CAS  Google Scholar 

  40. Hoekstra, W.J., Press, J.B., Bonner, M.P., Andrade-Gordon, P., Keane, P.M., Durkin, K.A., Liotta, D.C., and Mayo, K.H.: Adamantane and Nipecotic Acid Derivatives as Novel [beta]-Turn Mimics. Bioorganic Medicinal Chem Lett 1994, 4:1361–1364.

    Article  CAS  Google Scholar 

  41. Mathias, L.J. and Tullos, G.L.: Synthesis of adamantyl and benzoxazole substituted poly(m-phenylene)s via the nickel catalysed coupling of aryl chlorides. Polymer 1996, 37:3771–3774.

    Article  CAS  Google Scholar 

  42. Chern, Y.-T. and Wang, W.-L.: Synthesis and characterization of tough polyamides derived from 4,9-bis[4-(4-aminophenoxy)phenyl]diamantane. Polymer 1998, 39: 5501–5506.

    Article  CAS  Google Scholar 

  43. Chern, Y.-T.: Synthesis of polyamides derived from 4,9-bis(4-aminophenyl) diamantane. Polymer 1998, 39:4123–4127.

    Article  CAS  Google Scholar 

  44. Huang, C.-F., Lee, H.-F., Kuo, S.-W., Xu, H., and Chang, F.-C.: Star polymers via atom transfer radical polymerization from adamantane-based cores. Polymer 2004, 45:2261–2269.

    Article  CAS  Google Scholar 

  45. Eastmond, G.C., Gibas, M., and Paprotny, J.: Pendant adamantyl poly(ether imide)s: synthesis and a preliminary study of properties. Euro Polym J 1999, 35:2097–2106.

    Article  CAS  Google Scholar 

  46. Lee, Y.K., Jeong, H.Y., Kim, K.M., Kim, J.C., Choi, H.Y., Kwon, Y.D., Choo, D.J., Jang, Y.R., Yoo, K.H., Jang, J., and Talaie, A.: Synthesis of new PPV based polymer and its application to display. Curr Appl Phys 2002, 2:241–244.

    Article  Google Scholar 

  47. Jeong, H.Y., Lee, Y.K., Talaie, A., Kim, K.M., Kwon, Y.D., Jang, Y.R., Yoo, K.H., Choo, D.J., and Jang, J.: Synthesis and characterization of the first adamantane-based poly(p-phenylenevinylene) derivative: an intelligent plastic for smart electronic displays. Thin Solid Films 2002, 417:171–174.

    Article  CAS  Google Scholar 

  48. Kar, A.K. and Lightner, D.A.: Circular dichroism of distorted helices. C(10)-Adamantyl and C(10)-tert-butyl biliverdins. Tetrahedron: Asymmetry 1998, 9:3863–3880.

    Article  CAS  Google Scholar 

  49. Seidl, P.R. and Leal, K.Z.: Steric contributions to carbon-13 chemical shifts of 1- and 2-methyl adamantanes by DFT/GIAO. J Mol Structure: THEOCHEM 2001, 539:159–162.

    Article  CAS  Google Scholar 

  50. Martin, V.V., Alferiev, I.S., Weis, A.L.: Amplified fluorescent molecular probes based on 1,3,5,7-tetrasubstituted adamantane. Tetrahedron Lett 1999, 40:223–226.

    Article  CAS  Google Scholar 

  51. Tsuzuki, N., Hama, T., Kawada, M., Hasui, A., Konishi, R., Shiwa, S., Ochi, Y., Futaki, S., and Kitagawa, K.: Adamantane as a brain-directed drug carrier for poorly absorbed drug. 2. AZT derivatives conjugated with the 1-adamantane moiety. J Pharmaceut Sci 1994, 83:481–484.

    Article  CAS  Google Scholar 

  52. Tsuzuki, N., Hama, T., Hibi, T., Konishi, R., Futaki, S., and Kitagawa, K.: Adamantane as a brain-directed drug carrier for poorly absorbed drug: Antinociceptive effects of [D-Ala2]Leu-enkephalin derivatives conjugated with the 1-adamantane moiety. Biochem Pharmacol 1991, 41:R5–8.

    Article  CAS  Google Scholar 

  53. Kitagawa, K., Mizobuchi, N., Hama, T., Hibi, T., Konishi, R., and Futaki, S.: Synthesis and antinociceptive activity of [D-Ala2]Leu-enkephalin derivatives conjugated with the adamantane moiety. Chem Pharmaceut Bull (Tokyo) 1997, 45:1782–1787.

    CAS  Google Scholar 

  54. Manoharan, M., Tivel, K.L., and Cook, P.D.: Lipidic nucleic acids. Tetrahedron Lett 1995, 36:3651–3654.

    Article  CAS  Google Scholar 

  55. Lomadze, N. and Schneider, H.-J.: Reversal of polyamine selectivity for DNA and RNA by steric hindrance. Tetrahedron Lett 2002, 43:4403–4405.

    Article  CAS  Google Scholar 

  56. Moine, L., Cammas, S., Amiel, C., Guerin, P., and Sebille, B.: Polymers of malic acid conjugated with the 1-adamantyl moiety as lipophilic pendant group. Polymer 1997, 38:3121–3127.

    Article  CAS  Google Scholar 

  57. Ranganathan, D. and Kurur, S.: Synthesis of totally chiral, multiple armed, poly glu and poly asp scaffoldings on bifunctional adamantane core. Tetrahedron Lett 1997, 38:1265–1268.

    Article  CAS  Google Scholar 

  58. Busch, K. and Tampé, R.: Single molecule research on surfaces: from analytics to construction and back. Rev Mol Biotechnol 2001, 82:3–24.

    Article  CAS  Google Scholar 

  59. Kim, J.H., Hong, J.-A., Yoon, M., Yoon, M.Y., Jeong, H.-S., and Hwang, H.J.: Solid-phase genetic engineering with DNA immobilized on a gold surface. J Biotechnol 2002, 96:213–221.

    Article  CAS  Google Scholar 

  60. Nanotechnology in medicine [http://www.foresight.org/Updates/Update16/Update 16.1.html\anchor576239]

    Google Scholar 

  61. Shokova, E., Tafeenko, V., and Kovalev, V.: First synthesis of adamantylated thiacalix[4]arenes. Tetrahedron Lett 2002, 43:5153–5156.

    Article  CAS  Google Scholar 

  62. Ranganathan, D., Samant, M.P., Nagaraj, R., and Bikshapathy, E.: Design, synthesis and membrane ion transport properties of cystine- and serine-based cyclo-4-oxa-heptane-1,7-bisamides. Tetrahedron Lett 2002, 43:5145–5147.

    Article  CAS  Google Scholar 

  63. Ranganathan, D., Haridas, V., and Karle, I.L.: Diamond crowns: Design, synthesis and x-ray crystallographic studies of a novel family of adamantane-containing crown ethers. Tetrahedron 1999, 55:6643–6656.

    Article  CAS  Google Scholar 

  64. Ranganathan, D., Thomas, A., Haridas, V., Kurur, S., Madhusudanan, K.P., Roy, R., Kunwar, A.C., Sarma, A.V., Vairamani, M., and Sarma, K.D.: Design, synthesis, and characterization of tyrosinophanes, a novel family of aromatic-bridged tyrosine-based cyclodepsipeptides. J Organic Chem 1999, 64:3620–3629.

    Article  CAS  Google Scholar 

  65. Ranganathan, D., Haridas, V., Kurur, S., Nagaraj, R., Bikshapathy, E., Kunwar, A.C., Sarma, A.V., and Vairamani, M.: Norbornene-constrained cyclic peptides with hairpin architecture: design, synthesis, conformation, and membrane ion transport. J Organic Chem 2000, 65:365–374.

    Article  CAS  Google Scholar 

  66. Ranganathan, D., Haridas, V., Nagaraj, R., and Karle, I.L.: Double-helical cyclic peptides: design, synthesis, and crystal structure of figure-eight mirror-image conformers of adamantane-constrained cystine-containing cyclic peptide cyclo (Adm-Cyst)(3). J Organic Chem 2000, 65:4415–4422.

    Article  CAS  Google Scholar 

  67. Karle, I.L.: Hydrogen bonds in molecular assemblies of natural, synthetic and ‘designer’ peptides. J Mol Structure 1999, 474:103–112.

    Article  CAS  Google Scholar 

  68. Karle, I. and Ranganathan, D.: Construction of polar and hydrophobic pores and channels by assembly of peptide molecules. J Mol Structure 2003, 647:85–96.

    Article  CAS  Google Scholar 

  69. Jaime, C., Redondo, J., Sanchez-Ferrando, F., and Virgili, A.: [beta]-cyclodextrin inclusion complex with adamantane Intermolecular 1H{1H} NOE determinations and molecular mechanics calculations. J Mol Structure 1991, 248:317–329.

    Article  CAS  Google Scholar 

  70. Karakasyan, C., Millot, M.-C., and Vidal-Madjar, C.: Immobilization of a (dextran-adamantane-COOH) polymer onto [beta]-cyclodextrin-modified silica. J Chromatography B 2004, 808:63–67.

    Article  CAS  Google Scholar 

  71. Ayres, F.D., Khan, S.I., and Chapman, O.L.: Synthesis and x-ray crystal structures of poly-adamantane molecular rods. Tetrahedron Lett 1994, 35:8561–8564.

    Article  CAS  Google Scholar 

  72. Ishizone, T., Tajima, H., Matsuoka, S., and Nakahama, S.: Synthesis of tetramers of 1,3-adamantane derivatives. Tetrahedron Lett 2001, 42:8645–8647.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Ramezani, H., Mansoori, G.A. (2007). Diamondoids as Molecular Building Blocks for Nanotechnology. In: Mansoori, G.A., George, T.F., Assoufid, L., Zhang, G. (eds) Molecular Building Blocks for Nanotechnology. Topics in Applied Physics, vol 109. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39938-6_4

Download citation

Publish with us

Policies and ethics