Skip to main content

Nanoengineered Biomimetic Bone-Building Blocks

  • Chapter
Molecular Building Blocks for Nanotechnology

Part of the book series: Topics in Applied Physics ((TAP,volume 109))

Abstract

Bone is a paradigm for a dynamic tissue because it has a unique capability of selfregenerating or self-remodeling throughout its life without leaving a scar. However, many circumstances call for bone grafting owing to bone defects arising either from traumatic or nontraumatic destruction. Bone grafting is a field of intensive investigation in human health care as it directly affects the quality and length of human life. Basically, bone grafting is a surgical method that repairs or regenerates the defective bone with the help of bone graft materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lakes, R. (1993). Materials with structural hierarchy. Nature 361: 511–5.

    Google Scholar 

  2. Hartgerink, J.D., Beniash, E., and Stupp, S.I. (2001). Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294: 1684–8.

    CAS  Google Scholar 

  3. LeGeros, R.Z. (1994). In: Brown, P.W. and Constantz, B., Eds. Biological and Synthetic Apatites. Boca Raton, FL: CRC.

    Google Scholar 

  4. Park, J.B. (1984). Biomaterials Science & Engineering. New York: Plenum.

    Google Scholar 

  5. Murugan, R. and Ramakrishna, S. (2005). In: Nalwa, H.S., Ed. Handbook of Nanostructured Biomaterials and Their Applications. California: American Scientific.

    Google Scholar 

  6. Currey, J.D. (2002). Bones: Structure and Mechanics. Princeton, NJ: Princeton University Press.

    Google Scholar 

  7. Lowenstam, H.A. and Weiner, S. (1989). On Biomineralization. New York: Oxford University Press.

    Google Scholar 

  8. McConnell, D. (1962). The crystal structure of bone. Clin. Orthop. Relat. Res. 23: 253–68.

    Google Scholar 

  9. Frost, H.M. (1964). In: Frost, H.M., Ed. Bone Biodynamics. Boston: Little Brown; p. 315–34.

    Google Scholar 

  10. Aubin, J.E. and Liau, F. (1996). Principles of Bone Biology. 1st ed. San Diego: Academic.

    Google Scholar 

  11. Ducy, P., Schinke, T., and Karsenty, G. (2000). The osteoblast: A sophisticated fibroblast under central surveillance. Science 289: 1501–4.

    CAS  Google Scholar 

  12. Cowin, S.C., van Buskirk, W.C., and Ashman, R.B. (1987). In: Skalak, R. and Chien, S. Eds. Handbook of Bioengineering. New York: McGraw-Hill.

    Google Scholar 

  13. Majeska, R.J. and Wuthier, R.E. (1975). Studies on matrix vesicles isolated from chick epiphyseal cartilage: Association of pyrophosphatase and ATPase activities with alkaline phosphatase. Biochim. Biophys. Acta 391: 51–60.

    CAS  Google Scholar 

  14. Anderson, H.C. (1969). Vesicles associated with calcification in the matrix of epiphyseal cartilage. J. Cell Biol. 41: 59–72.

    CAS  Google Scholar 

  15. Inoue, S. and Okazaki, K. (1978). Biocrystals. Sci. Am. 236: 82–92.

    Google Scholar 

  16. Ahmad, Z. and Mark, J.E. (1998). Biomimetic materials: Recent developments in organic-inorganic hybrids. Mater. Sci. Eng. C 6: 183–96.

    Google Scholar 

  17. Berman, A., Addadi, L., and Weiner, S. (1988). Interactions with sea-urchin skeleton macromolecules and growing calcite crystals: A study of intracrystalline proteins. Nature 331: 546–48.

    CAS  Google Scholar 

  18. Mergenhagen, S.E., Martin, G.R., Rizzo, A.A., Wright, D.N., and Scott, D.B. (1960). Calcification in vivo of implanted collagen. Biochim. Biophys. Acta 43: 563–5.

    CAS  Google Scholar 

  19. Simkiss, K. (1975). Bone and Biomineralization. London: Edward Arnold.

    Google Scholar 

  20. Simkiss, K. and Wilbur, K.M. (1989). Biomineralization: Cell Biology and Mineral Deposition. New York: Academic.

    Google Scholar 

  21. Damien, C.J. and Parsons, J.R. (1991). Bone graft and bone graft substitutes: A review of current technology and applications. J. Appl. Biomater. 2: 187–208.

    CAS  Google Scholar 

  22. Murugan, R. and Ramakrishna, S. (2004). Nanostructured biomaterials. In: Nalwa, H.S., Ed. Encyclopedia of Nanoscience and Nanotechnology, California: American Scientific, 7: 595–613.

    Google Scholar 

  23. Welch, R.D., Zhang, H., and Bronson, D.G. (2003). Experimental tibial plateau fractures augmented with calcium phosphate cement or autologous bone graft. J. Bone Joint Surg. Am. 85: 222–31.

    Google Scholar 

  24. Myerson, M.S., Neufeld, S.K., and Uribe, J. (2005). Fresh-frozen structural allografts in the foot and ankle. J. Bone Joint Surg. Am. 87: 113–20.

    Google Scholar 

  25. Li, X.D. and Hu, Y.Y. (2001). The treatment of osteomyelitis with gentamicin-reconstituted bone xenograft-composite. J. Bone Joint Surg. Br. 83: 1063–8.

    CAS  Google Scholar 

  26. Cypher, T.J. and Grossman, J.P. (1996). Biological principles of bone graft healing. J. Foot Ankle Surg. 35: 413–7.

    CAS  Google Scholar 

  27. Mowlem, R. (1944). Cancellous chip bone-grafts: Report on 75 cases. Lancet 2: 746–8.

    Google Scholar 

  28. Connolly, J.F. (1995). Injectable bone marrow preparations to stimulate osteogenic repair. Clin. Orthop. Relat. Res. 313: 8–18.

    Google Scholar 

  29. Tiedeman, J.J., Garvin, K.L., Kile, T.A., and Connolly, J.F. (1995). The role of a composite, demineralized bone matrix and bone marrow in the treatment of osseous defects. Orthopedics 18: 1153–8.

    CAS  Google Scholar 

  30. Gazdag, A.R., Lane, J.M., Glaser, D., and Forster, R.A. (1995). Alternatives to autogenous bone graft: Efficacy and indications. J. Am. Acad. Orthop. Surg. 3: 1–8.

    Google Scholar 

  31. Asahina, I., Sato, I., Oda, M., Marukawa, E., Imranul, A.M., and Enomoto, S. (1999). In: Bone Engineering. 1st edition. Toronto: Em Squared; p. 526.

    Google Scholar 

  32. Lexer, E. (1908). Substitution of whole or half joints freshly amputated extermities by free plastic operation. Surg. Gynec. Obstet. 6: 601–7.

    Google Scholar 

  33. Mankin, H.J. and Gebhardt, M.C. (1996). Long-term results of allograft replacement in the management of bone tumours. Clin. Orthop. Relat. Res. 324: 86–97.

    Google Scholar 

  34. Simonds, R.J., Holmberg, S.D., Hurwitz, R.Z., et al. (1992). Transmission of human immunodeficiency virus type 1 from a seronegative organ and tissue donor. N. Engl. J. Med. 326: 726–32.

    CAS  Google Scholar 

  35. Salama, R. (1983). Xenogeneic bone grafting in humans. Clin. Orthop. Relat. Res. 174: 113–21.

    Google Scholar 

  36. Salama, R. (1973). Recombined grafts of bone and marrow. J. Bone Jt. Surg. Br. 55: 402–17.

    CAS  Google Scholar 

  37. Mears, D.C. (1977). Metals in medicine and surgery. Inter. Metals Rev. 218: 119–55.

    Google Scholar 

  38. De Boer, H.H. (1988). The history of bone grafts. Clin. Orthop. 226: 292–8.

    Google Scholar 

  39. Perry, C.R. (1999). Bone repair techniques, bone graft, and bone graft substitutes. Clin. Orthop. Relat. Res. 360: 71–86.

    Google Scholar 

  40. Bohner, M. (2000). Calcium orthophosphates in medicine: From ceramics to calcium phosphate cements. Injury 31: SD37–47.

    Google Scholar 

  41. Betz, R.R. (2002). Limitations of autograft and allograft: New synthetic solutions. Orthopedics 25: S561–70.

    Google Scholar 

  42. Cornell, C.N. and Lane, J.M. (1998). Current understanding of osteoconduction in bone regeneration. Clin. Orthop. Relat. Res. 355: S267–73.

    Google Scholar 

  43. Tuli, S.M. and Singh, A.D. (1978). The osteoinductive property of decalcified bone matrix: An experimental study. J. Bone Jt. Surg. Br. 60: 116–23.

    CAS  Google Scholar 

  44. Sakou, T. (1998). Bone morphogenetic proteins: From basic studies to clinical approaches. Bone 22: 591–603.

    CAS  Google Scholar 

  45. Connolly, J.F. (1995). Injectable bone marrow preparations to stimulate osteogenic repair. Clin. Orthop. Relat. Res. 313: 8–18.

    Google Scholar 

  46. Connolly, J.F., Guse, R., Lippiello, L., and Dehne, R. (1989). Development of an osteogenic bone-marrow preparation. J. Bone Jt. Surg. Am. 71: 684–91.

    CAS  Google Scholar 

  47. Jarcho, M. (1981). Calcium phosphates ceramics as hard tissues prosthetics. Clin. Orthop. Relat. Res. 157: 259–78.

    CAS  Google Scholar 

  48. De Groot, K. and Ducheyne, P. (1981). In vivo surface activity of a hydroxyapatite alveolar bone substitute. J. Biomed. Mater. Res. 15: 441–5.

    Google Scholar 

  49. Black, J. and Hastings, G.W. (1998). Handbook of Biomaterials Properties. London: Chapman and Hall.

    Google Scholar 

  50. De Groot, K. (1990). In: Yammamuro, T. and Hench, L.L., Eds. Chemistry of Calcium Phosphates. Boca Raton, FL: CRC.

    Google Scholar 

  51. Hench, L.L. (1998). Bioceramics. J. Am. Ceram. Soc. 81: 1705–28.

    CAS  Google Scholar 

  52. LeGeros, R.Z. and LeGeros, J.P. (1993). In: Hench, L.L. and Wilson. J., Eds. An Introduction to Bioceramics. Singapore: World Scientific, pp.139–80.

    Google Scholar 

  53. Kay, M.I., Young, R.A., and Posner, A.S. (1964). Crystal structure of hydroxyapatite. Nature 204: 1050–2.

    CAS  Google Scholar 

  54. Aoki, H. (1994). Medical Applications of Hydroxyapatite. Tokyo: Ishiyaku EuroAmerica.

    Google Scholar 

  55. Werner, Gerhard's Grundr. (1786). 281.

    Google Scholar 

  56. Daubree, A. (1851). Comp. Rend. Acad. Sci. Paris 32: 625.

    Google Scholar 

  57. Ray, R.D. and Ward, A.A. (1951). A preliminary report on studies of basic calcium phosphate in bone replacement. Surg. Forum 2: 429–34.

    Google Scholar 

  58. Aoki, H. and Kato, K. (1973). Synthesis of hydroxyapatite under hydrothermal conditions. Part 1: Effects of pH and temperature. J. Dent. App. Mater. 14: 36–9.

    Google Scholar 

  59. DeGroot, K. (1980). Bioceramic consisting calcium phosphate salts. Biomaterials 1: 47–50.

    CAS  Google Scholar 

  60. Jarcho, M. (1976). Hydroxyapatite synthesis and characterization in dense polycrystalline forms. J. Mater. Sci. 1: 2027–35.

    Google Scholar 

  61. Murugan, R., Rao, K.P., and Kumar, T.S.S. (2003). Heat-deproteinated xenogeneic bone from slaughterhouse waste: Physico-chemical properties. Bull. Mater. Sci. 26: 523–8.

    CAS  Google Scholar 

  62. Murugan, R., Kumar, T.S.S., and Rao, K.P. (2002). Fluorinated bovine hydroxyapatite: Preparation and characterization. Mater. Lett. 57: 429–33.

    CAS  Google Scholar 

  63. Murugan, R. and Ramakrishna, S. (2004). Coupling of therapeutic molecules onto surface modified coralline hydroxyapatite. Biomaterials 25: 3073–80.

    CAS  Google Scholar 

  64. Murugan, R., Rao, K.P., and Kumar, T.S.S. (2002). Microwave synthesis of bioresorbable carbonated hydroxyapatite using goniopora. Bioceramics 15: 51–4.

    Google Scholar 

  65. Webster, T.J., Siegel, R.W., and Bizios, R. (2000). Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21: 1803–10.

    CAS  Google Scholar 

  66. Ota, Y. and Iwashita, T. (1998). Novel preparation method of hydroxyapatite fibers. J. Am. Ceram. Soc. 81: 1665–8.

    CAS  Google Scholar 

  67. Murugan, R. and Ramakrishna, S. (2005). Aqueous mediated synthesis of bioresorbable nanocrystalline hydroxyapatite. J. Cryst. Growth 274: 209–13.

    CAS  Google Scholar 

  68. Murugan, R. and Ramakrishna, S. (2004). Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials 25: 3829–35.

    CAS  Google Scholar 

  69. Zhang, S. and Consalves, K.E. (1997). Preparation and characterization of thermally stable nanohydroxyapatite. J. Mater. Sci. Mater. Med. 8: 25–8.

    Google Scholar 

  70. Zhang, F., Zhou, Z.H., Yang, S.P., Mao, L.H., Chen, H.M., and Yu, X.B. (2005). Hydrothermal synthesis of hydroxyapatite nanorods in the presence of anionic starburst dendrimer. Mater. Lett. 59: 1422–5.

    CAS  Google Scholar 

  71. Nakamura, S., Tsobe, T., and Senna, M. (2001). Hydroxyapatite nano sol prepared via a mechanochemical route. J. Nanopart. Res. 3: 57–61.

    CAS  Google Scholar 

  72. Koumoulidis, G.C., Vaimakis, T.C., Sdoukos, A.T., Boukos, N.K., and Trapalis, C.C. (2001). Preparation of hydroxyapatite lath-like particles using high-speed dispersing equipment. J. Am. Ceram. Soc. 84: 1203–8.

    CAS  Google Scholar 

  73. Yang, Y. and Ong, J.L. (2002). Rapid sintering of hydroxyapatite by microwave processing. J. Mater. Sci. Lett. 21: 67–9.

    CAS  Google Scholar 

  74. Edward, S.A., Nathaniel, J.G., Atsushi, N., and Jackie, Y.Y. (1998). In: Xiao, D. and Ying, J., Eds. MRS 1998 Fall Meetings. Private communication; p. 611.

    Google Scholar 

  75. Ahn, E.S., Gleason, N.J., Nakahira, A., and Ying, J.Y. (2001). Nanostructure processing of hydroxyapatite-based bioceramics. Nano Lett. 1: 149–53.

    CAS  Google Scholar 

  76. Murugan, R. and Ramakrishna, S. 2006.

    Google Scholar 

  77. Bissell, M.J. and Barcellos-Hoff, M.H. (1987). The influence of extracellular matrix on gene expression: Is structure the message? J. Cell. Sci. Suppl. 8: 327–43.

    CAS  Google Scholar 

  78. Vijayan, S. and Varma, H. (2002). Microwave sintering of nanosized hydroxyapatite powder compacts. Mater. Lett. 56: 827–31.

    CAS  Google Scholar 

  79. Yang, Y., Ong, J.L., and Tian, J. (2002). Rapid sintering of hydroxyapatite by microwave processing. J. Mater. Sci. Lett. 21: 67–9.

    CAS  Google Scholar 

  80. Lee, C.H., Singla, A., and Lee, Y. (2001). Biomedical applications of collagen. Int. J. Pharm. 221: 1–22.

    CAS  Google Scholar 

  81. Nimni, M.E. and Harkness, F.D. (1988). In: Nimni, M.E., Ed. Collagen Biochemistry. Boca Raton, FL: CRC, 1:1–79.

    Google Scholar 

  82. Ramachandran, G.N. (1967). Chemistry of Collagen. New York: Academic.

    Google Scholar 

  83. Lehninger, A.L., Nelson, D.L., and Cox, M.M. (2000). In: Freeman, W.H., Ed. Principles of Biochemistry. Third edition. New York: Marcel Dekker.

    Google Scholar 

  84. Cornell, C.N., Lane, J.M., Chapman, M., Merkow, R., Seligson, D., Henry, S., Gustilo, R., and Vincent, K. (1991). Multicenter trial of Collagraft as bone graft substitute. J. Orthop. Trauma 5: 1–8.

    CAS  Google Scholar 

  85. Terheyden, H., Knak, C., Jepsen, S., Palmie, S., and Rueger, D.R. (2001). Mandibular reconstruction with a prefabricated vascularized bone graft using recombinant human osteogenic protein-1: An experimental study in miniature pigs. Part I: Prefabrication. Int. J. Oral Maxillofac. Surg. 30: 373–9.

    CAS  Google Scholar 

  86. Tay, B.K., Le, A.X., Heilman, M., Lotz, J., and Bradford, D.S. (1998). Use of a collagen-hydroxyapatite matrix in spinal fusion: A rabbit model. Spine 23: 2276–81.

    CAS  Google Scholar 

  87. Urist, M.R. (1965). Bone: Formation by autoinduction. Science 150: 893–9.

    CAS  Google Scholar 

  88. Sandhu, H.S. (1998). Biologic enhancement of spinal fusion. Orthop. Clin. North. Am. 29: 621–31.

    CAS  Google Scholar 

  89. Wang, E.A., Rosen, V., D'Alessandro, J.S., Bauduy, M., Cordes, P., Harada, T., Israel, D.I., Hewick, R.M., Kerns, K.M., LaPan, P., Luxenberg, D.P., McQuaid, D., Moutsasos, I.K., Nove, J., and Wozney, J.M. (1990). Recombinant human bone morphogenetic protein induces bone formation. Proc. Natl. Acad. Sci. USA 87: 2220–4.

    CAS  Google Scholar 

  90. Boyne, P.J., Marx, R.E., Nevins, M., Triplett, G., Lazaro, E., Lilly, L.C., Alder, M., and Nummikoski, P. (1997). A feasibility study evaluating rhBMP-2/absorbable collagen sponge for maxillary sinus floor augmentation. Int. J. Periodon. Restor. Dent. 17: 11–25.

    CAS  Google Scholar 

  91. Ono, I., Tateshita, T., Inoue, M., and Kuboki, Y. (1998). In vivo strength enhancement of hydroxyapatite combined with rhBMP-2. J. Bone Mineral Metab. 16: 81–7.

    CAS  Google Scholar 

  92. Jung, R.E., Glauser, R., Schärer, P., Hämmerle, C.H.F., Sailer, H.F., and Weber, F.E. (2003). Effect of rhBMP-2 on guided bone regeneration in humans. Clin. Oral Imp.l Res. 14: 556–68.

    Google Scholar 

  93. Bianco, P., Riminucci, M., Gronthos, S., and Robey, P.G. (2001). Bone marrow stromal stem cells: Nature, biology, and potential applications. Stem Cells 19: 180–92.

    CAS  Google Scholar 

  94. Tiedmann, J.J., Connolly, J.F., Strates, B.S., and Lippiello, L. (1991). Treatment of nonunion by percutaneous injection of bone marrow and demineralized bone matrix. An experimental study in dogs. Clin. Orthop. Relat. Res. 268: 294–302.

    Google Scholar 

  95. Cornell, C.N., Lane, J.M., Chapman, M., Merkow, R., Seligson, D., Henry, S., Gustilo, R., and Vincent, K. (1991). Multicenter trial of Collagraft as bone graft substitute. J. Orthop. Trauma 5: 1–8.

    CAS  Google Scholar 

  96. Bozic, K.J., Glazer, P.A., Zurakowski, D., Simon, B.J., Lipson, S.J., and Hayes, W.C. (1999). In vivo evaluation of coralline hydroxyapatite and direct current electrical stimulation in lumbar spinal fusion. Spine 24: 2127–33.

    CAS  Google Scholar 

  97. Holliday, L. (1966). Composite Materials. New York: Elsevier.

    Google Scholar 

  98. Ramakrishna, S., Mayer, J., Wintermantel, E., and Leong, K.W. (2001). Biomedical applications of polymer-composite materials: A review. Comp. Sci. Tech. 61: 1189–224.

    CAS  Google Scholar 

  99. Bonfield, W., Grynpas, M.D., Tully, A.E., Bowman, J., and Abram, J. (1981). Hydroxyapatite reinforced polyethylene: A mechanically compatible implant material for bone replacement. Biomaterials 2: 185–6.

    CAS  Google Scholar 

  100. Bonfield, W., Doyle, C., and Tanner, K.E. (1986). In: Cristel, P., Meunier, A., and Lee, A.J.C., Eds. Biological and Biomechanical Performance of Biomaterials. Amsterdam: Elsevier; p.153.

    Google Scholar 

  101. Laurencin, C.T., Attawia, M.A., Elgendy, H.E., and Herbert, K.M. (1996). Tissue engineered bone-regeneration using degradable polymers: The formation of mineralized matrices. Bone 91: S93–9.

    Google Scholar 

  102. Daniels, A.U., Chang, M.K.O., and Andriano, K.P. (1990). Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J. Appl. Biomat. 1: 57–78.

    CAS  Google Scholar 

  103. Murugan, R. and Ramakrishna, S. (2004). Coupling of therapeutic molecules onto surface modified coralline hydroxyapatite. Biomaterials 25: 3073–80.

    CAS  Google Scholar 

  104. Murugan, R. and Ramakrishna, S. (2004). Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials 25: 3829–35.

    CAS  Google Scholar 

  105. Murugan, R. and Rao, K.P (1998). In: Srinivasan, K.S.V., Ed. Proceedings of IUPAC Macromolecules. New Delhi: Allied, pp. 638–41.

    Google Scholar 

  106. Murugan, R. and Rao, K.P. (2002). Controlled release of antibiotic from surface modified coralline hydroxyapatite. Trends Biomater. Artif. Organs 16: 43–5.

    Google Scholar 

  107. Murugan, R. and Rao, K.P. (2002). Biodegradable coralline hydroxyapatite composite gel using natural alginate. Bioceramics 15: 407–10.

    Google Scholar 

  108. TenHuisen, K.S., Martin, R.I., Klimkiewicz, M., and Brown, P.W. (1995). Formation and properties of a synthetic bone composite: Hydroxyapatite-collagen. J. Biomed. Mater. Res. 29: 803–10.

    CAS  Google Scholar 

  109. Hoexter, D.L. (2002). Bone regeneration graft materials. J. Oral Implantol. 28: 290–4.

    Google Scholar 

  110. Okazaki, M., Ohmae, H., Takahashi, J., Kimura, H., and Sakuda, M. (1990). Insolubilized properties of UV-irradiated CO3 apatite-collagen composites. Biomaterials 11: 568–72.

    CAS  Google Scholar 

  111. Hirota, K., Nishihara, K., and Tanaka, H. (1993). Pressure sintering of apatite-collagen composite. Biomed. Mater. Eng. 3: 147–51.

    CAS  Google Scholar 

  112. Tampieri, A., Celotti, G., Landi, E., Sandri, M., Falini, G., and Roveri, N. (2003). Biologically inspired synthesis of bone-like composite: self-assembled collagen fibers/hydroxyapatite nanocrystals. J. Biomed. Mater. Res. 67A: 618–25.

    CAS  Google Scholar 

  113. Du, C., Cui, F.Z., Zhu, X.D., and De Groot, K. (1999). Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J. Biomed. Mater. Res. 44: 407–15.

    CAS  Google Scholar 

  114. Itoh, S., Kikuchi, M., Koyama, Y., Takakuda, K., Shinomiya, K., and Tanaka, J. (2004). Development of a hydroxyapatite/collagen nanocomposite as a medical device. Cell Transplant 13: 451–61.

    Google Scholar 

  115. Yang, X.B., Bhatnagar, R.S., Li, S., and Oreffo, R.O. (2004). Biomimetic collagen scaffolds for human bone cell growth and differentiation. Tissue Eng. 10: 1148–59.

    CAS  Google Scholar 

  116. Liao, S.S., Cui, F.Z., Zhang, W., and Feng, Q.L. (2004). Hierarchically biomimetic bone scaffold materials: Nano-HA/collagen/PLA composite. J. Biomed. Mater. Res. Appl. Biomat. 69B: 158–65.

    CAS  Google Scholar 

  117. Zhang, S.M., Cui, F.Z., Lioa, S.S., Zhu, Y., and Han, L. (2003). Synthesis and biocompatibility of porous nano-hydroxyapatite/collagen/alginate composite. J. Mater. Sci. Mater. Med. 14: 641–5.

    CAS  Google Scholar 

  118. Yamaguchi, I., Tokuchi, K., Fukuzaki, H., Koyama, Y., Takakada, K., Monma, H., and Tanaka, J. (2001). Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J. Biomed. Mater. Res. 55: 20–7.

    CAS  Google Scholar 

  119. Chang, M.C., Ko, C.C., and Douglas, W.H. (2003). Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials 24: 2853–62.

    CAS  Google Scholar 

  120. Memoto, R., Nakamura, S., Isobe, T., and Senna, M. (2001). Direct synthesis of hydroxyapatite-silk fibroin nano-composite sol via a mechanochemical route. J. Sol. Gel. Sci. Tech. 21: 7–12.

    Google Scholar 

  121. Hao, J., Liu, Y., Zhou, S., Li, Z., and Deng, X. (2003). Investigation of nanocomposites based on semi-interpenetrating network of [L-poly (epsilon-caprolactone)]/[net-poly (epsilon-caprolactone)] and hydroxyapatite nanocrystals. Biomaterials 24: 1531–9.

    CAS  Google Scholar 

  122. Deng, X., Hao, J., and Wnag, C. (2001). Preparation and mechanical properties of nanocomposites of poly(D, L-lactide) with Ca-deficient hydroxyapatite nanocrystals. Biomaterials 22: 2867–73.

    CAS  Google Scholar 

  123. Liu, Q., De Wijn, J.R., and Van Blitterswijk, A. (1997). Nano-apatite/polymer composites: mechanical and physicochemical characteristics. Biomaterials 18: 1263–70.

    CAS  Google Scholar 

  124. Wang, X., Li, Y., Wei, J., and De Groot, K. (2002). Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites. Biomaterials 23: 4787–91.

    CAS  Google Scholar 

  125. Li, H., Chen, Y., and Xie, Y. (2003). Photo-crosslinking polymerization to prepare polyanhydride/needle-like hydroxyapatite biodegradable nanocomposite for orthopedic application. Mater. Lett. 57: 2848–54.

    CAS  Google Scholar 

  126. Song, J., Saiz, E., and Bertozzi, C.R. (2003). A new approach to mineralization of biocompatible hydrogel scaffolds: an efficient process toward 3-dimensional bonelike composites. J. Am. Chem. Soc. 125: 1236–43.

    CAS  Google Scholar 

  127. Liou, S.C., Chen, S.Y., and Liu, D.M. (2003). Synthesis and characterization of needlelike apatitic nanocomposite with controlled aspect ratios. Biomaterials 24: 3981–8.

    CAS  Google Scholar 

  128. Green, D., Walsh, D., Mann, S., and Oreffo, R.O.C. (2002). The potentials of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. Bone 30: 810–5.

    CAS  Google Scholar 

  129. Stupp, S.I. and Brawn, P.V. (1997). Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors. Science 277: 1242–8.

    CAS  Google Scholar 

  130. Stupp, S.I., LeBonheur, V., Walker, K., Li, L.S., Huggins, K.E., Keser, M., and Amstutz, A. (1997). Supramolecular materials: Self organized nanostructures. Science 276: 384–9.

    CAS  Google Scholar 

  131. Bates, F. (1991). Polymer-polymer phase behavior. Science 251: 898–905.

    CAS  Google Scholar 

  132. Zhang, S. (2003). Fabrication of novel biomaterials through molecular self-assembly. Nature Biotech. 21: 1171–77.

    CAS  Google Scholar 

  133. Kikuchi, M., Ikoma, T., Itoh, S., Matsumoto, H.N., Koyama, Y., Takakuda, K., Shinomiya, K., and Tanaka, J. (2004). Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen. Comp. Sci. Tech. 64: 819–25.

    CAS  Google Scholar 

  134. Roveri, N., Falini, G., Tampieri, A., Landi, E., Sandri, M., Sidoti, M.C., and Parma, B. (2003). Biologically inspired growth of hydroxyapatite nanocrystals inside self-assembled collagen fibers. Mater. Sci. Eng. C 23: 441–6.

    Google Scholar 

  135. Kikuchi, M., Itoh, S., Ichinose, S., Shinomiya, K., and Tanaka, J. (2001). Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 22: 1705–11.

    CAS  Google Scholar 

  136. Zhai, Y., Cui, F.Z., and Wang, Y. (2005). Formation of nano-hydroxyapatite on recombinant human-like collagen fibrils. Curr. Appl. Phys. 5: 429–32.

    Google Scholar 

  137. Rhee, S.H. and Tanaka, J. (1998). Hydroxyapatite coating on a collagen membrane by a biomimetic method. J. Am. Ceram. Soc. 81: 3029–31.

    CAS  Google Scholar 

  138. Rhee, S.H., Lee, J.D., and Tanaka, J. (2000). Nucleation of hydroxyapatite crystal through chemical interaction with collagen. J. Am. Ceram. Soc. 83: 2890–2.

    CAS  Google Scholar 

  139. Lin, X., Li, X., Fan, H., Wen, X., Lu, J., and Zhang, X. (2004). In situ synthesis of bone-like apatite/collagen nano-composite at low temperature. Mater. Lett. 58: 3569–72.

    CAS  Google Scholar 

  140. Zhang, W., Liao, S.S., and Cui, F.Z. (2003). Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chem. Mater. 15: 3221–6.

    CAS  Google Scholar 

  141. Chang, M.C., Ikoma, T., Kikuchi, M., and Tanaka, J. (2001). Preparation of a porous hydroxyapatite/collagen nanocomposite using glutataldehyde as a crosslinkage agent. J. Mater. Sci. Lett. 20: 1199–201.

    CAS  Google Scholar 

  142. Rhee, S.H., Suetsugu, Y., and Tanaka, J. (2001). Biomimetic configurational arrays of hydroxyapatite nanocrystals on bio-organics. Biomaterials 22: 2843–7.

    CAS  Google Scholar 

  143. Rhee, S.H. and Tanaka, J. (2001). Synthesis of a hydroxyapatite/collagen/chondroitin sulphate nanocomposite by a novel precipitation method. J. Am. Ceram. Soc. 84: 459–61.

    CAS  Google Scholar 

  144. Itoh, S., Kikuchi, M., Koyama, Y., Takakuda, K., Shinomiya, K., and Tanaka, J. (2002). Development of an artificial vertebral body using a novel biomaterial, hydroxyapatite/collagen composite. Biomaterials 23: 3919–26.

    CAS  Google Scholar 

  145. Itoh, S., Kikuchi, M., Koyama, Y., Takakuda, K., Shinomiya, K., and Tanaka, J. (2004). Development of a hydroxyapatite/collagen nanocomposite as a medical device. Cell Transplant 13: 451–61.

    Google Scholar 

  146. Langer, R. and Vacanti, J.P. (1993). Tissue engineering. Science 260: 920–6.

    CAS  Google Scholar 

  147. Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., and Peterson, L. (1994). Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331: 889–95.

    CAS  Google Scholar 

  148. Ponder, K.P., Gupta, S., Leland, F., Darlington, G., Finegold, M., Demayo, J., Ledley, F.D., Chowdhury, J.R., and Woo, S.L. (1991). Mouse hepatocytes migrate to liver parenchyma and function indefinitely after intrasplenic transplantation. Proc. Natl. Acad. Sci. USA 88: 1217–21.

    CAS  Google Scholar 

  149. Du, C., Cui, F.Z., Zhu, X.D., and De Groot, K. (1999). Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J. Biomed. Mater. Res. 44: 407–15.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Murugan, R., Ramakrishna, S. (2007). Nanoengineered Biomimetic Bone-Building Blocks. In: Mansoori, G.A., George, T.F., Assoufid, L., Zhang, G. (eds) Molecular Building Blocks for Nanotechnology. Topics in Applied Physics, vol 109. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39938-6_14

Download citation

Publish with us

Policies and ethics