Skip to main content

Central and Peripheral Nervous System Diseases

  • Chapter
Immunogenetics of Autoimmune Disease

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 650 Accesses

Abstract

Immune diseases of the central and peripheral nervous system constitute an heterogeneous group of disorders which share a significative implication of the immune system in pathophysiology. Multiple sclerosis (MS), Guillain Barré syndrome (GBS) and chronic inflammatory demyelinating polyneuropathy (CIDP) are considered of autoimmune origin, with an unidentified candidate auto-antigen. Many investigations have been performed to find genetic associations or linkage with genes encoding proteins involved in immune regulation. The only significant positive result is the HLA, especially class II molecules, whereas other genes like cytokines or chemokines did not give reproductive results. Myasthenia gravis (MG) is an antigen specific autoimmune disease (antibodies against acetyl choline receptors (AchR)), mainly mediated by the humoral immunity, but also associated with thymus changes, allowing a rough classification into different subsets of patients. In MG, it was possible to identify a genetic association to HLA and AchR genes, suggesting a direct participation of these molecules to disease initiation and development. Finally, narcolepsy is a disease of possible autoimmune origin, as suggested by its tight association with HLA alleles, although the primary antigenic target remains unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steinman L. Multiple sclerosis: A coordinated immunological attack against myelin in the central nervous system. Cell 1996; 85(3):299–302.

    Article  PubMed  CAS  Google Scholar 

  2. Compston A, Ebers G, Lassmann H et al. Me Alpine’s Multiple Sclerosis. 3rd ed. 1998.

    Google Scholar 

  3. McDonald WI, Compston A, Edan G et al. Recommended diagnostic criteria for multiple sclerosis: Guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001; 50(1):121–127.

    Article  PubMed  CAS  Google Scholar 

  4. Steinman L. Multiple sclerosis: A two-stage disease. Nature Immunology 2001; 2(9):762–764.

    Article  PubMed  CAS  Google Scholar 

  5. Trapp BD, Peterson J, Ransohoff RM et al. Axonal transection in the lesions of multiple sclerosis [see comments]. N Engl J Med 1998; 338(5):278–285.

    Article  PubMed  CAS  Google Scholar 

  6. Lucchinetti CF, Brueck W, Rodriguez M et al. Multiple sclerosis: Lessons from neuropathology. Semin Neurol 1998; 18(3):337–349.

    PubMed  CAS  Google Scholar 

  7. Jersild C, Fog T. Histocompatibility (HL-A) antigens associated with multiple sclerosis. Acta Neurol Scand Suppl 1972; 51:377.

    PubMed  CAS  Google Scholar 

  8. Clerget-Darpoux F, Govaerts A, Feingold N. HLA and susceptibility to multiple sclerosis. Tissue Antigens 1984; 24(3):160–169.

    PubMed  CAS  Google Scholar 

  9. Yaouanq J, Semana G, Eichenbaum S et al. Evidence for linkage disequilibrium between HLA-DRB1 gene and multiple sclerosis. The French Research Group on Genetic Susceptibility to MS. Science 1997; 276(5313):664–665.

    Article  PubMed  CAS  Google Scholar 

  10. Wansen K, Pastinen T, Kuokkanen S et al. Immune system genes in multiple sclerosis: Genetic association and linkage analyses on TCR beta, IGH, IFN-gamma and IL-1ra/IL-1 beta loci. J Neuroimmunol 1997; 79(1):29–36.

    Article  PubMed  CAS  Google Scholar 

  11. Feakes R, Chataway J, Sawcer S et al. Susceptibility to multiple sclerosis and the immunoglobulin heavy chain gene cluster. Ann Neurol 1998; 44(6):984.

    Article  PubMed  CAS  Google Scholar 

  12. Mertens C, Brassat D, Reboul J et al. A systematic study of oligodendrocyte growth factors as candidates for genetic susceptibility to MS. French Multiple Sclerosis Genetics Group. Neurology 1998; 51(3):748–753.

    PubMed  CAS  Google Scholar 

  13. Reboul J, Mertens C, Levillayer F et al. Cytokines in genetic susceptibility to multiple sclerosis:A candidate gene approach. French Multiple Sclerosis Genetics Group. J Neuroimmunol 2000; 102(1):107–112.

    Article  PubMed  CAS  Google Scholar 

  14. Oksenberg JR, Baranzini SE, Barcellos LF et al. Multiple sclerosis: Genomic rewards. J Neuroimmunol 2001; 113(2):171–184.

    Article  PubMed  CAS  Google Scholar 

  15. Kantarci OH, de Andrade M, Weinshenker BG. Identifying disease modifying genes in multiple sclerosis. J Neuroimmunol 2002; 123(1–2):144–159.

    Article  PubMed  CAS  Google Scholar 

  16. Pihlaja H, Rantamaki T, Wikstrom J et al. Linkage disequilibrium between the MBP tetranudeotide repeat and multiple sclerosis is restricted to a geographically defined subpopulation in Finland. Genes Immun 2003; 4(2):138–146.

    Article  PubMed  CAS  Google Scholar 

  17. Ueda H, Howson JM, Esposito L et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003; 423(6939):506–511.

    Article  PubMed  CAS  Google Scholar 

  18. Alizadeh M, Babron MC, Birebent B et al. Genetic interaction of CTLA-4 with HLA-DR15 in multiple sclerosis patients. Ann Neurol 2003; 54(1): 119–122.

    Article  PubMed  CAS  Google Scholar 

  19. Mycko MP, Kwinkowski M, Tronczynska E et al. Multiple sclerosis: The increased frequency of the ICAM-1 exon 6 gene point mutation genetic type K469. Ann Neurol 1998; 44(1):70–75.

    Article  PubMed  CAS  Google Scholar 

  20. Cournu-Rebeix I, Genin E, Lesca G et al. Intercellular adhesion molecule-1: A protective haplo-type against multiple sclerosis. Genes Immun 2003; 4(7):518–523.

    Article  PubMed  CAS  Google Scholar 

  21. Weinshenker BG, Wingerchuk DM, Liu Q et al. Genetic variation in the tumor necrosis factor alpha gene and the outcome of multiple sclerosis. Neurology 1997; 49(2):378–385.

    PubMed  CAS  Google Scholar 

  22. Schrijver HM, Crusius JB, Uitdehaag BM et al. Association of interleukin-1beta and interleukin-1 receptor antagonist genes with disease severity in MS. Neurology 1999; 52(3):595–599.

    PubMed  CAS  Google Scholar 

  23. Schmidt S, Barcellos LF, DeSombre K et al. Association of polymorphisms in the apolipoprotein E region with susceptibility to and progression of multiple sclerosis. Am J Hum Genet 2002; 70(3):708–717.

    Article  PubMed  CAS  Google Scholar 

  24. Vincent A, Palace J, Hilton-Jones D. Myasthenia gravis. Lancet 2001; 357(9274):2122–2128.

    Article  PubMed  CAS  Google Scholar 

  25. Engel AG. Myasthenia gravis and myasthenic syndromes. Ann Neurol 1984; 16(5):519–534.

    Article  PubMed  CAS  Google Scholar 

  26. Patrick J, Lindstrom J. Autoimmune response to acetylcholine receptor. Science 1973; 180(88):871–872.

    Article  PubMed  CAS  Google Scholar 

  27. Lindstrom JM, Seybold ME, Lennon VA et al. Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value. Neurology 1976; 26(11):1054–1059.

    PubMed  CAS  Google Scholar 

  28. Garchon HJ. Genetics of autoimmune myasthenia gravis, a model for antibody-mediated autoimmunity in man. J Autoimmun 2003; 21(2): 105–110.

    Article  PubMed  CAS  Google Scholar 

  29. Compston DA, Vincent A, Newsom-Davis J et al. Clinical, pathological, HLA antigen and immunological evidence for disease heterogeneity in myasthenia gravis. Brain 1980; 103(3):579–601.

    Article  PubMed  CAS  Google Scholar 

  30. Gautel M, Lakey A, Barlow DP et al. Titin antibodies in myasthenia gravis: Identification of a major immunogenic region of titin. Neurology 1993; 43(8):1581–1585.

    PubMed  CAS  Google Scholar 

  31. Ogawa Y, Kurebayashi N, Murayama T. Ryanodine receptor isoforms in excitation-contraction coupling. Adv Biophys 1999; 36:27–64.

    Article  PubMed  CAS  Google Scholar 

  32. Mossman S, Vincent A, Newsom-Davis J. Myasthenia gravis without acetylcholine-receptor antibody: A distinct disease entity. Lancet 1986; 1(8473):116–119.

    Article  PubMed  CAS  Google Scholar 

  33. Hoch W, McConville J, Helms S et al. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 2001; 7(3):365–368.

    Article  PubMed  CAS  Google Scholar 

  34. Fritze D, Herrman Jr C, Naeim F et al. HL-A antigens in myasthenia gravis. Lancet 1974; 1(7851):240–242.

    Article  PubMed  CAS  Google Scholar 

  35. Carlsson B, Wallin J, Pirskanen R et al. Different HLA DR-DQ associations in subgroups of idiopathic myasthenia gravis. Immunogenetics 1990; 31(5–6):285–290.

    Article  PubMed  CAS  Google Scholar 

  36. Hjelmstrom P, Peacock CS, Giscombe R et al. Polymorphism in tumor necrosis factor genes associated with myasthenia gravis. J Neuroimmunol 1998; 88(1–2): 137–143.

    Article  PubMed  CAS  Google Scholar 

  37. Price P, Witt C, Allcock R et al. The genetic basis for the association of the 8.1 ancestral haplo-type (Al, B8, DR3) with multiple immunopathological diseases. Immunol Rev 1999; 167:257–274.

    Article  PubMed  CAS  Google Scholar 

  38. Giraud M, Beaurain G, Yamamoto AM et al. Linkage of HLA to myasthenia gravis and genetic heterogeneity depending on anti-titin antibodies. Neurology 2001; 57(9): 1555–1560.

    PubMed  CAS  Google Scholar 

  39. Tzartos SJ, Barkas T, Cung MT et al. Anatomy of the antigenic structure of a large membrane autoantigen, the muscle-type nicotinic acetylcholine receptor. Immunol Rev 1998; 163:89–120.

    Article  PubMed  CAS  Google Scholar 

  40. Huang D, Pirskanen R, Hjelmstrom P et al. Polymorphisms in IL-1beta and IL-1 receptor antagonist genes are associated with myasthenia gravis. J Neuroimmunol 1998; 81(1–2):76–81.

    Article  PubMed  CAS  Google Scholar 

  41. Huang D, Liu L, Noren K et al. Genetic association of Ctla-4 to myasthenia gravis with thymoma. J Neuroimmunol 1998; 88(1–2):192–198.

    Article  PubMed  CAS  Google Scholar 

  42. Gilhus NE, Pandey JP, Gaarder PI et al. Immunoglobulin allotypes in myasthenia gravis patients with a thymoma. J Autoimmun 1990; 3(3):299–305.

    Article  PubMed  CAS  Google Scholar 

  43. Demaine A, Willcox N, Janer M et al. Immunoglobulin heavy chain gene associations in myasthenia gravis: New evidence for disease heterogeneity. J Neurol 1992; 239(1):53–56.

    Article  PubMed  CAS  Google Scholar 

  44. Huang DR, Zhou YH, Xia SQ et al. Markers in the promoter region of interleukin-10 (IL-10) gene in myasthenia gravis: Implications of diverse effects of IL-10 in the pathogenesis of the disease. J Neuroimmunol 1999; 94(1–2):82–87.

    PubMed  CAS  Google Scholar 

  45. Mantegazza R, Oksenberg JR, Baggi F et al. Increased incidence of certain TCR and HLA genes associated with myasthenia gravis in Italians. J Autoimmun 1990; 3(4):431–440.

    Article  PubMed  CAS  Google Scholar 

  46. Huang D, Zheng C, Giscombe R et al. Polymorphisms at-174 and in the 3′ flanking region of interleukin-6 (IL-6) gene in patients with myasthenia gravis. J Neuroimmunol 1999; 1010(2):197–200.

    Article  Google Scholar 

  47. Huang D, Xia S, Zhou Y et al. No evidence for interleukin-4 gene conferring susceptibility to myasthenia gravis Genetic association of Ctla-4 to myasthenia gravis with thymoma Polymorphisms in IL-1beta and IL-1 receptor antagonist genes are associated with myasthenia gravis. J Neuroimmunol 1998; 92(1–2):208–211.

    Article  PubMed  CAS  Google Scholar 

  48. Xu BY, Huang D, Pirskanen R et al. beta2-adrenergic receptor gene polymorphisms in myasthenia gravis (MG). Clin Exp Immunol 2000; 119(1):156–160.

    Article  PubMed  CAS  Google Scholar 

  49. Asbury AK, Cornblath DR. Assessment of current diagnostic criteria for Guillain-Barre syndrome. Ann Neurol 1990; 27(Suppl):S21–24.

    Article  PubMed  Google Scholar 

  50. Asbury AK. Guillain-Barre syndrome:Historical aspects. Ann Neurol 1990; 27(Suppl):S2–6.

    Article  PubMed  Google Scholar 

  51. Feasby TE, Gilbert JJ, Brown WF et al. An acute axonal form of Guillain-Barre polyneuropathy. Brain 1986; 109 (Pt 6):1115–1126.

    Article  PubMed  Google Scholar 

  52. Hartung HP, Pollard JD, Harvey GK et al. Immunopathogenesis and treatment of the Guillain-Barre syndrome—Part II. Muscle Nerve 1995; 18(2):154–164.

    Article  PubMed  CAS  Google Scholar 

  53. Hartung HP, Pollard JD, Harvey GK et al. Immunopathogenesis and treatment of the Guillain-Barre syndrome—Part I. Muscle Nerve 1995; 18(2):137–153.

    Article  PubMed  CAS  Google Scholar 

  54. Saida K. The immunopathology of Guillain-Barre syndrome. Curr Opin Neurol 1996; 9(5):329–333.

    Article  PubMed  CAS  Google Scholar 

  55. Yuki N, Tsujino Y. Familial Guillain-Barre syndrome subsequent to Campylobacter jejuni enteritis. J Pediatr 1995; 126(1):162.

    Article  PubMed  CAS  Google Scholar 

  56. Korn-Lubetzki I, Steiner I, Brenner T et al. Familial inflammatory demyelinating polyneuropathy:A Guillain-Barre syndrome variant without autoimmune predilection. J Neurol Neurosurg Psychiatry 1994; 57(8):1008–1009.

    PubMed  CAS  Google Scholar 

  57. Davidson DL, O’Sullivan AF, Morley KD. HLA antigens in familial Guillain-Barre syndrome. 71992; 55(6):508–509.

    Google Scholar 

  58. MacGregor GA. Familial Guillain-Barre syndrome. Lancet 1965; 2(7425): 1296.

    Article  PubMed  CAS  Google Scholar 

  59. Wilmshurst JM, Pohl KR, Vaughan RW et al. Familial Guillain-Barre syndrome. Eur J Neurol 1999; 6(4):499–503.

    Article  PubMed  CAS  Google Scholar 

  60. Kaslow RA, Sullivan-Bolyai JZ, Hafltin B et al. HLA antigens in Guillain-Barre syndrome. Neurology 1984; 34(2):240–242.

    PubMed  CAS  Google Scholar 

  61. Hafez M, Nagaty M, Al-Tonbary Y et al. HLA-antigens in Guillain-Barre syndrome. J Neurogenet 1985; 2(4):285–290.

    Article  PubMed  CAS  Google Scholar 

  62. Latovitzki N, Suciu-Foca N, Penn AS et al. HLA typing and Guillain-Barre syndrome. Neurology 1979; 29(5):743–745.

    PubMed  CAS  Google Scholar 

  63. Winer JB, Briggs D, Welsh K et al. HLA antigens in the Guillain-Barre syndrome. J Neuroimmunol 1988; 18(1):13–16.

    Article  PubMed  CAS  Google Scholar 

  64. Hillert J, Osterman PO, Olerup O. No association with HLA-DR,-DQ or-DP alleles in Guillain-Barre syndrome. J Neuroimmunol 1991; 31(1):67–72.

    Article  PubMed  CAS  Google Scholar 

  65. Koga M, Yuki N, Kashiwase K et al. Guillain-Barre and Fisher’s syndromes subsequent to Campylobacter jejuni enteritis are associated with HLA-B54 and Cwl independent of anti-ganglioside antibodies. J Neuroimmunol 1998; 88(1–2):62–66.

    Article  PubMed  CAS  Google Scholar 

  66. Ma JJ, Nishimura M, Mine H et al. HLA and T-cell receptor gene polymorphisms in Guillain-Barre syndrome. Neurology 1998; 51(2):379–384.

    PubMed  CAS  Google Scholar 

  67. Monos DS, Papaioakim M, Ho TW et al. Differential distribution of HLA alleles in two forms of Guillain-Barre syndrome. J Infect Dis 1997; 176(Suppl 2):S180–182.

    PubMed  Google Scholar 

  68. Guo L, Wang W, Li C et al. The association between HLA typing and different subtypes of Guillain Barre syndrome. Zhonghua Nei Ke Za Zhi 2002; 41(6):381–383.

    PubMed  CAS  Google Scholar 

  69. Magira EE, Papaioakim M, Nachamkin I et al. Differential distribution of HLA-DQ beta/DR beta epitopes in the two forms of Guillain-Barre syndrome, acute motor axonal neuropathy and acute inflammatory demyelinating polyneuropathy (AIDP): Identification of DQ beta epitopes associated with susceptibility to and protection from AIDP. J Immunol 2003; 170(6):3074–3080.

    PubMed  CAS  Google Scholar 

  70. Rees JH, Vaughan RW, Kondeatis E et al. HLA-class II alleles in Guillain-Barre syndrome and Miller Fisher syndrome and their association with preceding Campylobacter jejuni infection. J Neuroimmunol 1995; 62(1):53–57.

    Article  PubMed  CAS  Google Scholar 

  71. Li H, Yuan J, Hao H et al. HLA alleles in patients with Guillain-Barre syndrome. Chin Med J (Engl) 2000; 113(5):429–432.

    CAS  Google Scholar 

  72. Latov N. Diagnosis of CIDP. Neurology 2002; 59(12 Suppl 6):S2–6.

    PubMed  Google Scholar 

  73. Kieseier BC, Dalakas MC, Hartung HP. Immune mechanisms in chronic inflammatory demyelinating neuropathy. Neurology 2002; 59(12 Suppl 6):S7–12.

    PubMed  CAS  Google Scholar 

  74. Vaughan RW, Adam AM, Gray IA et al. Major histocompatibility complex class I and class II polymorphism in chronic idiopathic demyelinating polyradiculoneuropathy. J Neuroimmunol 1990; 27(2–3):149–153.

    Article  PubMed  CAS  Google Scholar 

  75. Aldrich MS. Diagnostic aspects of narcolepsy. Neurology 1998; 50(2 Suppl 1):S2–7.

    PubMed  CAS  Google Scholar 

  76. Bassetti C. Narcolepsy. Curr Treat Options Neurol 1999; 1(4):291–298.

    Article  PubMed  Google Scholar 

  77. Bassetti C, Aldrich MS. Narcolepsy. Neurol Clin 1996; 14(3):545–571.

    Article  PubMed  CAS  Google Scholar 

  78. Overeem S, Mignot E, Gert van Dijk J et al. Narcolepsy: Clinical features, new pathophysiologic insights, and future perspectives. J Clin Neurophysiol 2001; 18(2):78–105.

    Article  PubMed  CAS  Google Scholar 

  79. Sakurai T, Amemiya A, Ishii M et al. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998; 92(5): 1 page following 696.

    Article  PubMed  Google Scholar 

  80. Sakurai T, Moriguchi T, Furuya K et al. Structure and function of human prepro-orexin gene. J Biol Chem 1999; 274(25):17771–17776.

    Article  PubMed  CAS  Google Scholar 

  81. Lin L, Faraco J, Li R et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 1999; 98(3):365–376.

    Article  PubMed  CAS  Google Scholar 

  82. Chemelli RM, Willie JT, Sinton CM et al. Narcolepsy in orexin knockout mice: Molecular genetics of sleep regulation. Cell 1999; 98(4):437–451.

    Article  PubMed  CAS  Google Scholar 

  83. Hara J, Beuckmann CT, Nambu T et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 2001; 30(2):345–354.

    Article  PubMed  CAS  Google Scholar 

  84. Peyron C, Tighe DK, van den Pol AN et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 1998; 18(23):9996–10015.

    PubMed  CAS  Google Scholar 

  85. Peyron C, Faraco J, Rogers W et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 2000; 6(9):991–997. taf/dynapage.taf?file=/ncb/medicine/v996/n999/full/nm0900_0991.html taf/dynapage.taf?file=/ncb/medicine/v0906/n0909/abs/nm0900_0991.html.

    Article  PubMed  CAS  Google Scholar 

  86. Thannickal TC, Moore RY, Nienhuis R et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron 2000; 27(3):469–474.

    Article  PubMed  CAS  Google Scholar 

  87. Nishino S, Ripley B, Overeem S et al. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 2000; 355(9197):39–40.

    Article  PubMed  CAS  Google Scholar 

  88. Ripley B, Overeem S, Fujiki N et al. CSF hypocretin/orexin levels in narcolepsy and other neurological conditions. Neurology 2001; 57(12):2253–2258.

    PubMed  CAS  Google Scholar 

  89. Mignot E, Lammers GJ, Ripley B et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol 2002; 59(10): 1553–1562.

    Article  PubMed  Google Scholar 

  90. Chabas D, Taheri S, Renier C et al. The genetics of narcolepsy. Annu Rev Genomics Hum Genet 2003; 4:459–483.

    Article  PubMed  CAS  Google Scholar 

  91. Mignot E, Tafti M, Dement WC et al. Narcolepsy and immunity. Adv Neuroimmunol 1995; 5(1):23–37.

    Article  PubMed  CAS  Google Scholar 

  92. Juji T, Satake M, Honda Y et al. HLA antigens in Japanese patients with narcolepsy. All the patients were DR2 positive. Tissue Antigens 1984; 24(5):316–319.

    PubMed  CAS  Google Scholar 

  93. Seignalet J, Billiard M. Possible association between HLA-B7 and narcolepsy. Tissue Antigens 1984; 23(3):188–189.

    Article  PubMed  CAS  Google Scholar 

  94. Lin L, Hungs M, Mignot E. Narcolepsy and the HLA region. J Neuroimmunol 2001; 117(1–2):9–20.

    Article  PubMed  CAS  Google Scholar 

  95. Honda Y, Juji T, Matsuki K et al. HLA-DR2 and Dw2 in narcolepsy and in other disorders of excessive somnolence without cataplexy. Sleep 1986; 9(1): 133–142.

    PubMed  CAS  Google Scholar 

  96. Matsuki K, Juji T, Tokunaga K et al. Human histocompatibility leukocyte antigen (HLA) haplo-type frequencies estimated from the data on HLA class I, II, and III antigens in 111 Japanese narcoleptics. J Clin Invest 1985; 76(6):2078–2083.

    PubMed  CAS  Google Scholar 

  97. Mignot E, Hayduk R, Black J et al. HLA DQB1*0602 is associated with cataplexy in 509 narco-leptic patients. Sleep 1997; 20(11):1012–1020.

    PubMed  CAS  Google Scholar 

  98. Neely S, Rosenberg R, Spire JP et al. HLA antigens in narcolepsy. Neurology 1987; 37(12):1858–1860.

    PubMed  CAS  Google Scholar 

  99. Matsuki K, Grumet FC, Lin X et al. DQ (rather than DR) gene marks susceptibility to narcolepsy. Lancet 1992; 339(8800): 1052.

    Article  PubMed  CAS  Google Scholar 

  100. Pelin Z, Guilleminault C, Risch N et al. HLA-DQB1*0602 homozygosity increases relative risk for narcolepsy but not disease severity in two ethnic groups. US Modafinil in Narcolepsy Multicenter Study Group. Tissue Antigens 1998; 51(1):96–100.

    Article  PubMed  CAS  Google Scholar 

  101. Mignot E, Lin L, Rogers W et al. Complex HLA-DR and-DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am J Hum Genet 2001; 68(3):686–699.

    Article  PubMed  CAS  Google Scholar 

  102. Lock CB, So AK, Welsh KI et al. MHC class II sequences of an HLA-DR2 narcoleptic. Immunogenetics 1988; 27(6):449–455.

    Article  PubMed  CAS  Google Scholar 

  103. Mignot E, Lin X, Arrigoni J et al. DQBl*0602 and DQAl*0102 (DQ1) are better markers than DR2 for narcolepsy in Caucasian and black Americans. Sleep 1994; 17(8 Suppl):S60–67.

    PubMed  CAS  Google Scholar 

  104. Uryu N, Maeda M, Nagata Y et al. No difference in the nucleotide sequence of the DQ beta beta 1 domain between narcoleptic and healthy individuals with DR2,Dw2. Hum Immunol 1989; 24(3):175–181.

    Article  PubMed  CAS  Google Scholar 

  105. Ellis MC, Hetisimer AH, Ruddy DA et al. HLA class II haplotype and sequence analysis support a role for DQ in narcolepsy. Immunogenetics 1997; 46(5):410–417.

    Article  PubMed  CAS  Google Scholar 

  106. Kadotani H, Faraco J, Mignot E. Genetic studies in the sleep disorder narcolepsy. Genome Res 1998; 8(5):427–434.

    PubMed  CAS  Google Scholar 

  107. Singh SM, George CF, Ott RN et al. IgH (mu-switch and gamma-1) region restriction fragment length polymorphism in human narcolepsy. J Clin Immunol 1996; 16(4):208–215.

    Article  PubMed  CAS  Google Scholar 

  108. Hungs M, Lin L, Okun M et al. Polymorphisms in the vicinity of the hypocretin/orexin are not associated with human narcolepsy. Neurology 2001; 57(10):1893–1895.

    PubMed  CAS  Google Scholar 

  109. Hohjoh H, Nakayama T, Ohashi J et al. Significant association of a single nucleotide polymorphism in the tumor necrosis factor-alpha (TNF-alpha) gene promoter with human narcolepsy. Tissue Antigens 1999; 54(2):138–145.

    Article  PubMed  CAS  Google Scholar 

  110. Hohjoh H, Terada N, Miki T et al. Haplotype analyses with the human leucocyte antigen and tumour necrosis factor-alpha genes in narcolepsy families. Psychiatry Clin Neurosci 2001; 55(1):37–39.

    Article  PubMed  CAS  Google Scholar 

  111. Hohjoh H, Terada N, Kawashima M et al. Significant association of the tumor necrosis factor receptor 2 (TNFR2) gene with human narcolepsy. Tissue Antigens 2000; 56(5):446–448.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Chabas, D., Cournu-Rebeix, I., Fontaine, B. (2006). Central and Peripheral Nervous System Diseases. In: Immunogenetics of Autoimmune Disease. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-39926-3_5

Download citation

Publish with us

Policies and ethics