Skip to main content

Genomic Variation and Autoimmune Disease

  • Chapter
Book cover Immunogenetics of Autoimmune Disease

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 666 Accesses

Abstract

Genetic epidemiology is the study of the relationship between genomic and phenotypic variation with a goal to uncover the genetic basis of monogenic or complex disorders. A variety of study designs are available, and the importance of choosing an approach that is appropriate for the goals of the study cannot be over-emphasized. In addition to study design, important issues include selection of genetic marker type and number of markers to be tested, as well as the use of genotyping technology. In this chapter, we review these important features of genetic epidemiology studies with particular emphasis on applications to autoimmune conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blangero J, Williams JT, Almasy L. Quantitative trait locus mapping using human pedigrees. Hum Biol 2000; 72(1):35–62.

    PubMed  CAS  Google Scholar 

  2. Penrose LS. The general purpose sibpair linkage test. Ann Eugen 1953; 18(2):120–124.

    PubMed  CAS  Google Scholar 

  3. Terwilliger JD, Ott J. Handbook of Human Genetic Linkage. Baltimore: Johns Hopkins University Press, 1994.

    Google Scholar 

  4. Ott J. The number of families required to detect or exclude linkage heterogeneity. Am J Hum Genet 1986; 39(2):159–165.

    PubMed  CAS  Google Scholar 

  5. O’Connell JR, Weeks DE. The VITESSE algorithm for rapid exact multilocus linkage analysis via genotype set-recoding and fuzzy inheritance. Nat Genet 1995; 11(4):402–408.

    PubMed  CAS  Google Scholar 

  6. Schaffer AA, Gupta SK, Shriram K et al. Avoiding recomputation in linkage analysis. Hum Hered 1994; 44(4):225–237.

    PubMed  CAS  Google Scholar 

  7. Kruglyak L, Daly MJ, Reeve-Daly MP et al. Parametric and nonparametric linkage analysis: A unified multipoint approach. Am J Hum Genet 1996; 58(6):1347–1363.

    PubMed  CAS  Google Scholar 

  8. Gudbjartsson DF, Jonasson K, Frigge ML et al. Allegro, a new computer program for multipoint linkage analysis. Nat Genet 2000; 25(1):12–13.

    PubMed  CAS  Google Scholar 

  9. Kong A, Cox NJ. Allele-sharing models: LOD scores and accurate linkage tests. Am J Hum Genet 1997; 61(5):1179–1188.

    PubMed  CAS  Google Scholar 

  10. Abecasis GR, Cherny SS, Cookson WO et al. Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30(1):97–101.

    PubMed  CAS  Google Scholar 

  11. Varilo T, Savukoski M, Norio R et al. The age of human mutation: Genealogical and linkage disequilibrium analysis of the CLN5 mutation in the finnish population. Am J Hum Genet 1996; 58(3):506–512.

    PubMed  CAS  Google Scholar 

  12. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273(5281):1516–1517.

    PubMed  CAS  Google Scholar 

  13. Terwilliger JD, Goring HH. Gene mapping in the 20th and 21st centuries: Statistical methods, data analysis, and experimental design. Hum Biol 2000; 72(1):63–132.

    PubMed  CAS  Google Scholar 

  14. Martin ER, Monks SA, Warren LL et al. A test for linkage and association in general pedigrees: The pedigree disequilibrium test. Am J Hum Genet 2000; 67(1):146–154.

    PubMed  CAS  Google Scholar 

  15. Lee WC. Genetic association studies of adult-onset diseases using the case-spouse and case-offspring designs. Am J Epidemiol 2003; 158(11):1023–1032.

    PubMed  Google Scholar 

  16. Knowler WC, Williams RC, Pettitt DJ et al. Gm3;5,13,14 and type 2 diabetes mellitus: An association in American Indians with genetic admixture. Am J Hum Genet 1988; 43(4):520–526.

    PubMed  CAS  Google Scholar 

  17. Wacholder S, Rothman N, Caporaso N. Population stratification in epidemiologic studies of common genetic variants and cancer: Quantification of bias. J Natl Cancer Inst 2000; 92(14):1151–1158.

    PubMed  CAS  Google Scholar 

  18. Wacholder S, Rothman N, Caporaso N. Counterpoint: Bias from population stratification is not a major threat to the validity of conclusions from epidemiological studies of common polymorphisms and cancer. Cancer Epidemiol Biomarkers Prev 2002; 11(6):513–520.

    PubMed  Google Scholar 

  19. Devlin B, Roeder K. Genomic control for association studies. Biometrics 1999; 55(4):997–1004.

    PubMed  CAS  Google Scholar 

  20. Pritchard JK, Stephens M, Rosenberg NA et al. Association mapping in structured populations. Am J Hum Genet 2000; 67(1):170–181.

    PubMed  CAS  Google Scholar 

  21. Reich DE, Goldstein DB. Detecting association in a case-control study while correcting for population stratification. Genet Epidemiol 2001; 20(1):4–16.

    PubMed  CAS  Google Scholar 

  22. Risch N, Teng J. The relative power of family-based and case-control designs for linkage disequilibrium studies of complex human diseases I. DNA pooling. Genome Res 1998; 8(12):1273–1288.

    PubMed  CAS  Google Scholar 

  23. Gauderman WJ. Sample size requirements for association studies of gene-gene interaction. Am J Epidemiol 2002; 155(5):478–484.

    PubMed  Google Scholar 

  24. Gauderman WJ. Sample size requirements for matched case-control studies of gene-environment interaction. Stat Med 2002; 21(1):35–50.

    PubMed  Google Scholar 

  25. Schaid DJ. Case-parents design for gene-environment interaction. Genet Epidemiol 1999; 16(3):261–273.

    PubMed  CAS  Google Scholar 

  26. Weinberg CR, Wilcox AJ, Lie RT. A log-linear approach to case-parent-triad data: Assessing effects of disease genes that act either directly or through maternal effects and that may be subject to parental imprinting. Am J Hum Genet 1998; 62(4):969–978.

    PubMed  CAS  Google Scholar 

  27. Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequilibrium: The insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993; 52(3):506–516.

    PubMed  CAS  Google Scholar 

  28. Horvath S, Laird NM. A discordant-sibship test for disequilibrium and linkage: No need for parental data. Am J Hum Genet 1998; 63(6):1886–1897.

    PubMed  CAS  Google Scholar 

  29. Martin ER, Bass MP, Gilbert JR et al. Genotype-based association test for general pedigrees: The genotype-PDT. Genet Epidemiol 2003; 25(3):203–213.

    PubMed  CAS  Google Scholar 

  30. Rabinowitz D, Laird N. A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum Hered 2000; 50(4):211–223.

    PubMed  CAS  Google Scholar 

  31. Horvath S, Xu X, Lake SL et al. Family-based tests for associating haplotypes with general phenotype data: Application to asthma genetics. Genet Epidemiol 2004; 26(1):61–69.

    PubMed  Google Scholar 

  32. Dudbridge F. Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25(2):115–121.

    PubMed  Google Scholar 

  33. Schaid DJ. General score tests for associations of genetic markers with disease using cases and their parents. Genet Epidemiol 1996; 13(5):423–449.

    PubMed  CAS  Google Scholar 

  34. Schaid DJ, Rowland CM, Tines DE et al. Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 2002; 70(2):425–434.

    PubMed  Google Scholar 

  35. Lake SL, Lyon H, Tantisira K et al. Estimation and tests of haplotype-environment interaction when linkage phase is ambiguous. Hum Hered 2003; 55(1):56–65.

    PubMed  CAS  Google Scholar 

  36. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm (with discussion). J R Stat Soc B 1977; B39:1–38.

    Google Scholar 

  37. Litt M, Luty JA. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 1989; 44(3):397–401.

    PubMed  CAS  Google Scholar 

  38. Lander ES, Linton LM, Birren B et al. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822):860–921.

    PubMed  CAS  Google Scholar 

  39. Botstein D, Risch N. Discovering genotypes underlying human phenotypes: Past successes for mendelian disease, future approaches for complex disease. Nat Genet 2003; 33(Suppl):228–237.

    PubMed  CAS  Google Scholar 

  40. Daly MJ, Rioux JD, Schaffner SF et al. High-resolution haplotype structure in the human genome. Nat Genet 2001; 29(2):229–232.

    PubMed  CAS  Google Scholar 

  41. Gabriel SB, Schaffner SF, Nguyen H et al. The structure of haplotype blocks in the human genome. Science 2002; 296(5576):2225–2229.

    PubMed  CAS  Google Scholar 

  42. Jeffreys AJ, Kauppi L, Neumann R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet 2001; 29(2):217–222.

    PubMed  CAS  Google Scholar 

  43. Walsh EC, Mather KA, Schaffner SF et al. An integrated haplotype map of the human major histocompatibility complex. Am J Hum Genet 2003; 73(3):580–590.

    PubMed  CAS  Google Scholar 

  44. Stenzel A, Lu T, Koch WA et al. Patterns of linkage disequilibrium in the MHC region on human chromosome 6p. Hum Genet 2004; 114(4):377–385.

    PubMed  CAS  Google Scholar 

  45. Anderson EC, Slatkin M. Population-genetic basis of haplotype blocks in the 5q31 region. Am J Hum Genet 2004; 74(1):40–49.

    PubMed  CAS  Google Scholar 

  46. Patil N, Berno AJ, Hinds DA et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 2001; 294(5547):1719–1723.

    PubMed  CAS  Google Scholar 

  47. Dawson E, Abecasis GR, Bumpstead S et al. A first-generation linkage disequilibrium map of human chromosome 22. Nature 2002; 418(6897):544–548.

    PubMed  CAS  Google Scholar 

  48. Cardon LR, Abecasis GR. Using haplotype blocks to map human complex trait loci. Trends Genet 2003; 19(3):135–140.

    PubMed  CAS  Google Scholar 

  49. Couzin J. Human genome. HapMap launched with pledges of $100 million. Science 2002; 298(5595):941–942.

    PubMed  CAS  Google Scholar 

  50. Couzin J. Genomics. New mapping project splits the community. Science 2002; 296(5572):1391–1393.

    PubMed  CAS  Google Scholar 

  51. The International HapMap project. Nature 2003; 426(6968):789–796.

    Google Scholar 

  52. Venter JC, Adams MD, Myers EW et al. The sequence of the human genome. Science 2001; 291(5507):1304–1351.

    PubMed  CAS  Google Scholar 

  53. Kwok PY, Chen X. Detection of single nucleotide polymorphisms. Curr Issues Mol Biol 2003; 5(2):43–60.

    PubMed  CAS  Google Scholar 

  54. Oliphant A, Barker DL, Stuelpnagel JR et al. BeadArray technology: Enabling an accurate, cost-effective approach to high-throughput genotyping. Biotechniques. 2002; (Suppl):56–58, 60–51.

    Google Scholar 

  55. Kennedy GC, Matsuzaki H, Dong S et al. Large-scale genotyping of complex DNA. Nat Biotechnol 2003; 21(10):1233–1237.

    PubMed  CAS  Google Scholar 

  56. Matsuzaki H, Loi H, Dong S et al. Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. Genome Res 2004; 14(3):414–425.

    PubMed  CAS  Google Scholar 

  57. Fakhrai-Rad H, Zheng J, Willis TD et al. SNP discovery in pooled samples with mismatch repair detection. Genome Res 2004; 14(7):1404–1412.

    PubMed  CAS  Google Scholar 

  58. Barmada MM, Brant SR, Nicolae DL et al. A genome scan in 260 inflammatory bowel disease-affected relative pairs. Inflamm Bowel Dis 2004; 10(1):15–22.

    PubMed  Google Scholar 

  59. Jawaheer D, Seldin MF, Amos CI et al. A genomewide screen in multiplex rheumatoid arthritis families suggests genetic overlap with other autoimmune diseases. Am J Hum Genet 2001; 68(4):927–936.

    PubMed  CAS  Google Scholar 

  60. Jawaheer D, Seldin MF, Amos CI et al. Screening the genome for rheumatoid arthritis susceptibility genes: A replication study and combined analysis of 512 multicase families. Arthritis Rheum 2003; 48(4):906–916.

    PubMed  CAS  Google Scholar 

  61. Gaffney PM, Kearns GM, Shark KB et al. A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families. Proc Natl Acad Sci USA 1998; 95(25):14875–14879.

    PubMed  CAS  Google Scholar 

  62. Gaffney PM, Ortmann WA, Selby SA et al. Genome screening in human systemic lupus erythematosus: Results from a second minnesota cohort and combined analyses of 187 sib-pair families. Am J Hum Genet 2000; 66(2):547–556.

    PubMed  CAS  Google Scholar 

  63. Tomer Y. Genetic dissection of familial autoimmune thyroid diseases using whole genome screening. Autoimmun Rev 2002; 1(4):198–204.

    PubMed  CAS  Google Scholar 

  64. Hirschhorn JN. Genetic epidemiology of type 1 diabetes. Pediatr Diabetes 2003; 4(2):87–100.

    PubMed  Google Scholar 

  65. Coraddu F, Sawcer S, Feakes R et al. HLA typing in the united kingdom multiple sclerosis genome screen. Neurogenetics 1998; 2(1):24–33.

    PubMed  CAS  Google Scholar 

  66. Coraddu F, Sawcer S, D’Alfonso S et al. A genome screen for multiple sclerosis in Sardinian multiplex families. Eur J Hum Genet 2001; 9(8):621–626.

    PubMed  CAS  Google Scholar 

  67. Haines JL, Ter-Minassian M, Bazyk A et al. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. The Multiple Sclerosis Genetics Group [see comments]. Nat Genet 1996; 13(4):469–471.

    PubMed  CAS  Google Scholar 

  68. Cox NJ, Wapelhorst B, Morrison VA et al. Seven regions of the genome show evidence of linkage to type 1 diabetes in a consensus analysis of 767 multiplex families. Am J Hum Genet 2001; 69(4):820–830.

    PubMed  CAS  Google Scholar 

  69. Onengut-Gumuscu S, Concannon P. Mapping genes for autoimmunity in humans: Type 1 diabetes as a model. Immunol Rev 2002; 190:182–194.

    PubMed  CAS  Google Scholar 

  70. Becker KG, Simon RM, Bailey-Wilson JE et al. Clustering of nonmajor histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc Natl Acad Sci USA 1998; 95(17):9979–9984.

    PubMed  CAS  Google Scholar 

  71. Becker KG. The common genetic hypothesis of autoimmune/inflammatory disease. Curr Opin Allergy Clin Immunol 2001; 1(5):399–405.

    PubMed  CAS  Google Scholar 

  72. Becker KG. The common variants/multiple disease hypothesis of common complex genetic disorders. Med Hypotheses 2004; 62(2):309–317.

    PubMed  CAS  Google Scholar 

  73. Bergsteinsdottir K, Yang HT, Pettersson U et al. Evidence for common autoimmune disease genes controlling onset, severity, and chronicity based on experimental models for multiple sclerosis and rheumatoid arthritis. J Immunol 2000; 164(3):1564–1568.

    PubMed  CAS  Google Scholar 

  74. Vyse TJ, Todd JA. Genetic analysis of autoimmune disease. Cell 1996; 85(3):311–318.

    PubMed  CAS  Google Scholar 

  75. Merriman TR, Cordell HJ, Eaves IA et al. Suggestive evidence for association of human chromosome 18q12-q21 and its orthologue on rat and mouse chromosome 18 with several autoimmune diseases. Diabetes 2001; 50(1):184–194.

    PubMed  CAS  Google Scholar 

  76. Morahan G, Morel L. Genetics of autoimmune diseases in humans and in animal models. Curr Opin Immunol 2002; 14(6):803–811.

    PubMed  CAS  Google Scholar 

  77. Raman K, Mohan C. Genetic underpinnings of autoimmunity—lessons from studies in arthritis, diabetes, lupus and multiple sclerosis. Curr Opin Immunol 2003; 15(6):651–659.

    PubMed  CAS  Google Scholar 

  78. A meta-analysis of whole genome linkage screens in multiple sclerosis. J Neuroimmunol 2003; 143(1–2):39–46.

    Google Scholar 

  79. A meta-analysis of genomic screens in multiple sclerosis. The transatlantic multiple sclerosis genetics cooperative. Mult Scler 2001; 7(1):3–11.

    Google Scholar 

  80. van Heel DA, Fisher SA, Kirby A et al. Inflammatory bowel disease susceptibility loci defined by genome scan meta-analysis of 1952 affected relative pairs. Hum Mol Genet 2004; 13(7):763–770.

    PubMed  Google Scholar 

  81. Wise LH, Lanchbury JS, Lewis CM. Meta-analysis of genome searches. Ann Hum Genet 1999; 63 (Pt 3):263–272.

    PubMed  CAS  Google Scholar 

  82. Ginn LR, Lin JP, Plotz PH et al. Familial autoimmunity in pedigrees of idiopathic inflammatory myopathy patients suggests common genetic risk factors for many autoimmune diseases. Arthritis Rheum 1998; 41(3):400–405.

    PubMed  CAS  Google Scholar 

  83. Lin JP, Cash JM, Doyle SZ et al. Familial clustering of rheumatoid arthritis with other autoimmune diseases. Hum Genet 1998; 103(4):475–482.

    PubMed  CAS  Google Scholar 

  84. Firooz A, Mazhar A, Ahmed AR. Prevalence of autoimmune diseases in the family members of patients with pemphigus vulgaris. J Am Acad Dermatol 1994; 31(3 Pt 1):434–437.

    PubMed  CAS  Google Scholar 

  85. Broadley SA, Deans J, Sawcer SJ et al. Autoimmune disease in first-degree relatives of patients with multiple sclerosis. A UK survey. Brain 2000; 123 (Pt 6):1102–1111.

    PubMed  Google Scholar 

  86. Heinzlef O, Alamowitch S, Sazdovitch V et al. Autoimmune diseases in families of French patients with multiple sclerosis. Acta Neurol Scand 2000; 101(1):36–40.

    PubMed  CAS  Google Scholar 

  87. McCombe PA, Chalk JB, Pender MP. Familial occurrence of multiple sclerosis with thyroid disease and systemic lupus erythematosus. J Neurol Sci 1990; 97(2–3):163–171.

    PubMed  CAS  Google Scholar 

  88. Minuk GY, Lewkonia RM. Possible familial association of multiple sclerosis and inflammatory bowel disease. N Engl J Med 1986; 314(9):586.

    PubMed  CAS  Google Scholar 

  89. Sadovnick AD, Paty DW, Yannakoulias G. Concurrence of multiple sclerosis and inflammatory bowel disease. N Engl J Med 1989; 321(11):762–763.

    PubMed  CAS  Google Scholar 

  90. Henderson RD, Bain CJ, Pender MP. The occurrence of autoimmune diseases in patients with multiple sclerosis and their families. J Clin Neurosci 2000; 7(5):434–437.

    PubMed  CAS  Google Scholar 

  91. Midgard R, Gronning M, Riise T et al. Multiple sclerosis and chronic inflammatory diseases. A case-control study. Acta Neurol Scand 1996; 93(5):322–328.

    PubMed  CAS  Google Scholar 

  92. Marrosu MG, Cocco E, Lai M et al. Patients with multiple sclerosis and risk of type 1 diabetes mellitus in Sardinia, Italy: A cohort study. Lancet 2002; 359(9316):1461–1465.

    PubMed  Google Scholar 

  93. Bias WB, Reveille JD, Beaty TH et al. Evidence that autoimmunity in man is a Mendelian dominant trait. Am J Hum Genet 1986; 39(5):584–602.

    PubMed  CAS  Google Scholar 

  94. Namjou B, Nath SK, Kilpatrick J et al. Stratification of pedigrees multiplex for systemic lupus erythematosus and for self-reported rheumatoid arthritis detects a systemic lupus erythematosus susceptibility gene (SLER1) at 5p15.3. Arthritis Rheum 2002; 46(11):2937–2945.

    PubMed  CAS  Google Scholar 

  95. Namjou B, Nath SK, Kilpatrick J et al. Genome scan stratified by the presence of anti-double-stranded DNA (dsDNA) autoantibody in pedigrees multiplex for systemic lupus erythematosus (SLE) establishes linkages at 19p13.2 (SLED1) and 18q21.1 (SLED2). Genes Immun 2002; 3(Suppl 1):S35–41.

    PubMed  CAS  Google Scholar 

  96. Nath SK, Kelly JA, Namjou B et al. Evidence for a susceptibility gene, SLEV1, on chromosome 17p13 in families with vitiligo-related systemic lupus erythematosus. Am J Hum Genet 2001; 69(6):1401–1406.

    PubMed  CAS  Google Scholar 

  97. Nath SK, Kelly JA, Reid J et al. SLEB3 in systemic lupus erythematosus (SLE) is strongly related to SLE families ascertained through neuropsychiatric manifestations. Hum Genet 2002; 111(1):54–58.

    PubMed  Google Scholar 

  98. Kelly JA, Thompson K, Kilpatrick J et al. Evidence for a susceptibility gene (SLEH1) on chromosome 11q14 for systemic lupus erythematosus (SLE) families with hemolytic anemia. Proc Natl Acad Sci USA 2002; 99(18):11766–11771.

    PubMed  CAS  Google Scholar 

  99. Scofield RH, Bruner GR, Kelly JA et al. Thrombocytopenia identifies a severe familial phenotype of systemic lupus erythematosus and reveals genetic linkages at 1q22 and 11p13. Blood 2003; 101(3):992–997.

    PubMed  CAS  Google Scholar 

  100. Quintero-Del-Rio Al, Kelly JA, Kilpatrick J et al. The genetics of systemic lupus erythematosus stratified by renal disease: Linkage at 10q22.3 (SLEN1), 2q34-35 (SLEN2), and 11p15.6 (SLEN3). Genes Immun 2002; 3(Suppl 1):S57–62.

    PubMed  CAS  Google Scholar 

  101. Brassat D, Azais-Vuillemin C, Yaouanq J et al. Familial factors influence disability in MS multiplex families. French Multiple Sclerosis Genetics Group. Neurology 1999; 52(8):1632–1636.

    PubMed  CAS  Google Scholar 

  102. Barcellos LF, Oksenberg JR, Green AJ et al. Genetic basis for clinical expression in multiple sclerosis. Brain 2002; 125 (Pt 1):150–158.

    PubMed  CAS  Google Scholar 

  103. Kantarci OH, de Andrade M, Weinshenker BG. Identifying disease modifying genes in multiple sclerosis. J Neuroimmunol 2002; 123(1–2):144–159.

    PubMed  CAS  Google Scholar 

  104. Jawaheer D, Lum RF, Amos CI et al. Clustering of disease features within 512 multicase rheumatoid arthritis families. Arthritis Rheum 2004; 50(3):736–741.

    PubMed  Google Scholar 

  105. Tabor HK, Risch NJ, Myers RM. Opinion: Candidate-gene approaches for studying complex genetic traits: Practical considerations. Nat Rev Genet 2002; 3(5):391–397.

    PubMed  CAS  Google Scholar 

  106. Barcellos LF, Oksenberg JR, Begovich AB et al. HLA-DR2 dose effect on susceptibility to multiple sclerosis and influence on disease course. Am J Hum Genet 2003; 72(3):710–716.

    PubMed  CAS  Google Scholar 

  107. Jawaheer D, Li W, Graham RR et al. Dissecting the genetic complexity of the association between human leukocyte antigens and rheumatoid arthritis. Am J Hum Genet 2002; 71(3):585–594.

    PubMed  CAS  Google Scholar 

  108. Graham RR, Ortmann WA, Langefeld CD et al. Visualizing human leukocyte antigen class II risk haplotypes in human systemic lupus erythematosus. Am J Hum Genet 2002; 71(3):543–553.

    PubMed  CAS  Google Scholar 

  109. Simmonds MJ, Gough SC. Unravelling the genetic complexity of autoimmune thyroid disease: HLA, CTLA-4 and beyond. Clin Exp Immunol 2004; 136(1):1–10.

    PubMed  CAS  Google Scholar 

  110. Duerr RH. The genetics of inflammatory bowel disease. Gastroenterol Clin North Am 2002; 31(1):63–76.

    PubMed  Google Scholar 

  111. Bonen DK, Cho JH. The genetics of inflammatory bowel disease. Gastroenterology 2003; 124(2):521–536.

    PubMed  CAS  Google Scholar 

  112. Barcellos LF, Begovich AB, Reynolds RL et al. Linkage and association with the NOS2A locus on chromosome 17q11 in multiple sclerosis. Ann Neurol 2004; 55(6):793–800.

    PubMed  CAS  Google Scholar 

  113. Prokunina L, Castillejo-Lopez C, Oberg F et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 2002; 32(4): 666–669.

    PubMed  CAS  Google Scholar 

  114. Prokunina L, Padyukov L, Bennet A et al. Association of the PD-1.3A allele of the PDCD1 gene in patients with rheumatoid arthritis negative for rheumatoid factor and the shared epitope. Arthritis Rheum 2004; 50(6):1770–1773.

    PubMed  CAS  Google Scholar 

  115. Brunet JF, Denizot F, Luciani MF et al. A new member of the immunoglobulin superfamily—CTLA-4. Nature 1987; 328(6127):267–270.

    PubMed  CAS  Google Scholar 

  116. Vaidya B, Pearce S. The emerging role of the CTLA-4 gene in autoimmune endocrinopathies. Eur J Endocrinol 2004; 150(5):619–626.

    PubMed  CAS  Google Scholar 

  117. Chistiakov DA, Turakulov RI. CTLA-4 and its role in autoimmune thyroid disease. J Mol Endocrinol 2003; 31(1):21–36.

    PubMed  CAS  Google Scholar 

  118. Kristiansen OP, Larsen ZM, Pociot F. CTLA-4 in autoimmune diseases—a general susceptibility gene to autoimmunity? Genes Immun 2000; 1(3):170–184.

    PubMed  CAS  Google Scholar 

  119. Ueda H, Howson JM, Esposito L et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003; 423(6939):506–511.

    PubMed  CAS  Google Scholar 

  120. Oaks MK, Hallett KM. Cutting edge: A soluble form of CTLA-4 in patients with autoimmune thyroid disease. J Immunol 2000; 164(10):5015–5018.

    PubMed  CAS  Google Scholar 

  121. Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet 1999; 22(2):139–144.

    PubMed  CAS  Google Scholar 

  122. Wille A, Hoh J, Ott J. Sum statistics for the joint detection of multiple disease loci in case-control association studies with SNP markers. Genet Epidemiol 2003; 25(4):350–359.

    PubMed  Google Scholar 

  123. Barcellos LF, Klitz W, Field LL et al. Association mapping of disease loci, by use of a pooled DNA genomic screen. Am J Hum Genet 1997; 61(3):734–747.

    PubMed  CAS  Google Scholar 

  124. Kirov G, Williams N, Sham P et al. Pooled genotyping of microsatellite markers in parent-offspring trios. Genome Res 2000; 10(1):105–115.

    PubMed  CAS  Google Scholar 

  125. Mohlke KL, Erdos MR, Scott LJ et al. High-throughput screening for evidence of association by using mass spectrometry genotyping on DNA pools. Proc Natl Acad Sci USA. 2002; 99(26):16928–16933.

    PubMed  CAS  Google Scholar 

  126. Sham P, Bader JS, Craig I et al. DNA Pooling: A tool for large-scale association studies. Nat Rev Genet 2002; 3(11):862–871.

    PubMed  CAS  Google Scholar 

  127. Bansal A, van den Boom D, Kammerer S et al. Association testing by DNA pooling: An effective initial screen. Proc Natl Acad Sci USA 2002; 99(26):16871–16874.

    PubMed  CAS  Google Scholar 

  128. Chen J, Germer S, Higuchi R et al. Kinetic polymerase chain reaction on pooled DNA: A high-throughput, high-efficiency alternative in genetic epidemiological studies. Cancer Epidemiol Biomarkers Prev 2002; 11(1):131–136.

    PubMed  CAS  Google Scholar 

  129. Germer S, Holland MJ, Higuchi R. High-throughput SNP allele-frequency determination in pooled DNA samples by kinetic PCR. Genome Res 2000; 10(2):258–266.

    PubMed  CAS  Google Scholar 

  130. Daniels J, Holmans P, Williams N et al. A simple method for analyzing microsatellite allele image patterns generated from DNA pools and its application to allelic association studies. Am J Hum Genet 1998; 62(5):1189–1197.

    PubMed  CAS  Google Scholar 

  131. Daniels J, McGuffin P, Owen MJ et al. Molecular genetic studies of cognitive ability. Hum Biol 1998; 70(2):281–296.

    PubMed  CAS  Google Scholar 

  132. Collins HE, Li H, Inda SE et al. A simple and accurate method for determination of microsatellite total allele content differences between DNA pools. Hum Genet 2000; 106(2):218–226.

    PubMed  CAS  Google Scholar 

  133. Plomin R, Hill L, Craig IW et al. A genome-wide scan of 1842 DNA markers for allelic associations with general cognitive ability: A five-stage design using DNA pooling and extreme selected groups. Behav Genet 2001; 31(6):497–509.

    PubMed  CAS  Google Scholar 

  134. Williams NM, Spurlock G, Norton N et al. Mutation screening and LD mapping in the VCFS deleted region of chromosome 22q11 in schizophrenia using a novel DNA pooling approach. Mol Psychiatry 2002; 7(10):1092–1100.

    PubMed  CAS  Google Scholar 

  135. Barcellos LF, Thomson G. Genetic analysis of multiple sclerosis in Europeans. J Neuroimmunol 2003; 143(1–2):1–6.

    PubMed  CAS  Google Scholar 

  136. Setakis E. Statistical analysis of the GAMES studies. J Neuroimmunol 2003; 143(1–2):47–52.

    PubMed  CAS  Google Scholar 

  137. Perlin MW, Lancia G, Ng SK. Toward fully automated genotyping: Genotyping microsatellite markers by deconvolution. Am J Hum Genet 1995; 57(5):1199–1210.

    PubMed  CAS  Google Scholar 

  138. LeDuc C, Miller P, Lichter J et al. Batched analysis of genotypes. PCR Methods Appl 1995; 4(6):331–336.

    PubMed  CAS  Google Scholar 

  139. Norton N, Williams NM, Williams HJ et al. Universal, robust, highly quantitative SNP allele frequency measurement in DNA pools. Hum Genet 2002; 110(5):471–478.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Schmidt, S., Barcellos, L.F. (2006). Genomic Variation and Autoimmune Disease. In: Immunogenetics of Autoimmune Disease. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-39926-3_2

Download citation

Publish with us

Policies and ethics