Advertisement

Fundamentals of Electromigration

  • King-Ning Tu
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 117)

Abstract

An ordinary household extension cord conducts electricity without electromigration in the cord because the electric current density in the cord is low, about 102 A/cm2, and also the ambient temperature is too low for atomic diffusion to occur in copper.

Keywords

Solder Joint Critical Length Void Formation Solder Bump Back Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. B. Huntington and A. R. Grone, “Current-induced marker motion in gold wires,” J. Phys. Chem. Solids, 20, 76 (1961).CrossRefGoogle Scholar
  2. H. B. Huntington, in “Diffusion,” H. I. Aaronson (Ed.), American Society for Metals, Metals Park, OH, p. 155 (1973).Google Scholar
  3. H. B. Huntington, in “Diffusion in Solids: Recent Development,” A. S. Nowick and J. J. Burton (Eds.), Academic Press, New York, p. 303 (1974).Google Scholar
  4. I. Ames, F. M. d'Heurle, and R. Horstman, IBM J. Res. Dev., 4, 461 (1970).CrossRefGoogle Scholar
  5. I. A. Blech, “Electromigration in thin aluminum films on titanium nitride,” J. Appl. Phys., 47, 1203–1208 (1976).CrossRefGoogle Scholar
  6. I. A. Blech and C. Herring, “Stress generation by electromigration,” Appl. Phys. Lett., 29, 131–133 (1976).CrossRefGoogle Scholar
  7. F. M. d'Heurle and P. S. Ho, in “Thin Films: Interdiffusion and Reactions,” J. M. Poate, K. N. Tu, and J. W. Mayer (eds.), Wiley–Interscience, New York, p. 243 (1978).Google Scholar
  8. P. S. Ho and T. Kwok, Rep. Prog. Phys., 52, 301 (1989).CrossRefGoogle Scholar
  9. K. N. Tu, “Electromigration in stressed thin films,” Phys. Rev. B, 45, 1409–1413 (1992).CrossRefGoogle Scholar
  10. R. Kircheim, Acta Metall. Mater., 40, 309 (1992).CrossRefGoogle Scholar
  11. M. A. Korhonen, P. Borgesen, K. N. Tu, and C. Y. Li, J. Appl. Phys., 73, 3790 (1993).CrossRefGoogle Scholar
  12. J. J. Clement and C. V. Thompson, J. Appl. Phys., 78, 900 (1995).CrossRefGoogle Scholar
  13. P. C. Wang, G. S. Cargill III, I. C. Noyan, and C. K. Hu, Appl. Phys. Lett., 72, 1296 (1998).CrossRefGoogle Scholar
  14. K. L. Lee, C. K. Hu, and K. N. Tu, J. Appl. Phys., 78, 4428 (1995).CrossRefGoogle Scholar
  15. R. S. Sorbello, in “Solid State Physics,” H. Ehrenreich and F. Spaepen (Eds.), Academic Press, New York, Vol. 51, pp. 159–231 (1997).Google Scholar
  16. C. K. Hu and J. M. E. Harper, Mater. Chem. Phys., 52, 5 (1998).CrossRefGoogle Scholar
  17. R. Rosenberg, D. C. Edelstein, C. K. Hu, and K. P. Rodbell, Annu. Rev. Mater. Sci., 30, 229 (2000).CrossRefGoogle Scholar
  18. E. T. Ogawa, K. D. Li, V. A. Blaschke, and P. S. Ho, IEEE Trans. Reliab., 51, 403 (2002).CrossRefGoogle Scholar
  19. K. N. Tu, “Recent advances on electromigration in very-large-scale-integration of interconnects,” J. Appl. Phys., 94, 5451–5473 (2003).CrossRefGoogle Scholar
  20. C. L. Gan, C. V. Thompson, K. L. Pey, W. K. Choi, H. L. Tay, B. Yu, and M. K. Radhakrishnan, Appl. Phys. Lett., 79, 4592 (2001).CrossRefGoogle Scholar
  21. A. V. Vairagar, S. G. Mhaisalkar, A. Krishnamoorthy, K.N. Tu, A.M. Gusak, M. A. Mayer, and E. Zschech, “In-situ observation of electromigration induced void migration in dual-damascene Cu interconnect structures,” Appl. Phys. Lett., 85, 2502–2504 (2004).CrossRefGoogle Scholar
  22. A. V. Vairagar, S. G. Mhaisalkar, M. A. Meyer, E. Zschech, A. Krishnamoorthy, K. N. Tu, and A. M. Gusak, “Direct evidence of electromigration failure mechanism in dual-damascene Cu interconnect tree structures,” Appl. Phys. Lett., 87, 081909 (2005).CrossRefGoogle Scholar
  23. M. Y. Yan, J. O. Suh, F. Ren, K. N. Tu, A. V. Vairagar, S. G. Mhaisalkar, and A. Krishnamoorthy, “Effect of Cu3Sn coatings on electromigration lifetime improvement of Cu dual-damascene interconnects,” Appl. Phys. Lett., 87, 211103 (2005).CrossRefGoogle Scholar
  24. M. Y. Yan, K. N. Tu, A. V. Vairagar, S. G. Mhaisalkar, and A. Krishnamoorthy, “Confinement of electromigration induced void propagation in Cu interconnect by a buried Ta diffusion barrier layer,” Appl. Phys. Lett., 87, 261906 (2005).CrossRefGoogle Scholar
  25. T. V. Zaporozhets, A. M. Gusak, K. N. Tu, and S. G. Mhaisalkar, “Three-dimensional simulation of void migration at the interface between thin metallic film and dielectric under electromigration,” J. Appl. Phys., 98, 103508 (2005).CrossRefGoogle Scholar
  26. P. G. Shewman, “Diffusion in Solids,” 2nd ed., The Minerals, Metals, and Materials Society, Warrendale, PA (1989).Google Scholar
  27. N. A. Gjostein, in “Diffusion,” H. I. Aaronson (Ed.), American Society for Metals, Metals Park, OH, p. 241 (1973).Google Scholar
  28. P. Wynblatt and N. A. Gjostein, Surf. Sci., 12, 109 (1968).CrossRefGoogle Scholar
  29. D. Gupta, K. Vieregge, and W. Gust, Acta Mater., 47, 5 (1999).CrossRefGoogle Scholar
  30. A. A. MacDowell, R. S. Celestre, N. Tamura, R. Spolenak, B. Valek, W. L. Brown, J. C. Bravman, H. A. Padmore, B. W. Batterman, and J. R. Patel, Nucl. Instrum. Methods., A 467, 936 (2001).Google Scholar
  31. N. Tamura, A. A. MacDowell, R. S. Celestre, H. A. Padmore, B. Valek, J. C. Bravman, R. Spolenak, W. L. Brown, T. Marieb, H. Fujimoto, B. W. Batterman, and J. R. Patel, Appl. Phys. Lett., 80, 3724 (2002).CrossRefGoogle Scholar
  32. H. Okabayashi, H. Kitamura, M. Komatsu, and H. Mori, AIP Conf. Proc., 373, 214 (1996). (See Figs. 2 and 4)CrossRefGoogle Scholar
  33. S. Shingubara, T. Osaka, S. Abdeslam, H. Sakue, and T. Takahagi, AIP Conf. Proc., 418, 159 (1998). (See Table I).Google Scholar
  34. K. N. Tu, C. C. Yeh, C. Y. Liu, and C. Chen, “Effect of current crowding on vacancy diffusion and void formation in electromigration,” Appl. Phys. Lett., 76, 988–990 (2000).CrossRefGoogle Scholar
  35. C. C. Yeh and K. N. Tu, “Numerical simulation of current crowding phenomena and their effects on electromigration in VLSI interconnects,” J. Appl. Phys., 88, 5680–5686 (2000).CrossRefGoogle Scholar
  36. E. C. C. Yeh and K. N. Tu, J. Appl. Phys., 89, 3203 (2001).CrossRefGoogle Scholar
  37. J. Lloyld, J. Appl. Phys., 94, 6483 (2003).CrossRefGoogle Scholar
  38. A. T. Wu, K. N. Tu, J. R. Lloyd, N. Tamura, B. C. Valek, and C. R. Kao, “Electromigration induced microstructure evolution in tin studied by synchrotron x-ray microdiffraction,” Appl. Phys. Lett., 85, 2490–2492(2004).CrossRefGoogle Scholar
  39. A. T. Wu, A. M. Gusak, K. N. Tu, and C. R. Kao, “Electromigration induced grain rotation in anisotropic conduction beta-Sn,” Appl. Phys. Lett., 86, 241902(2005).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • King-Ning Tu
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations