Copper–Tin Reactions in Bulk Samples

  • King-Ning Tu
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 117)


Solder reaction is the wetting of a molten solder on a solid Cu surface. Typically, when a small drop of molten solder touches a large Cu surface, it spreads and forms a cap on the Cu surface. The cap has a stable wetting angle, which is defined usually by Young’s equation for a triple point.


Solder Joint Solder Bump Molten Solder Kirkendall Void Wetting Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    K. N. Tu and K. Zeng, “Tin-lead (SnPb) solder reaction in flip chip technology,” Materials Science and Engineering Reports, R34, 1–58 (2001). (Review paper)CrossRefGoogle Scholar
  2. [2]
    K. Zeng and K. N. Tu, “Six cases of reliability study of Pb-free solder joints in electron packaging technology,” Materials Science and Engineering Reports, R38, 55–105 (2002). (Review paper)CrossRefGoogle Scholar
  3. [3]
    T. Young, Philos. Trans. R. Soc. London, 95, 65 (1805).CrossRefGoogle Scholar
  4. [4]
    H. K. Kim, H. K. Liou, and K. N. Tu, “Morphology of instability of wetting tips of eutectic SnBi, eutectic SnPb, and pure Sn on Cu,” J. Mater. Res., 10, 497–504 (1995).Google Scholar
  5. [5]
    H. K. Kim, H. K. Liou, and K. N. Tu, “Three-dimension morphology of a very rough interface formed in the soldering reaction between eutectic SnPb and Cu,” Appl. Phys. Lett., 66, 2337–2339 (1995).CrossRefGoogle Scholar
  6. [6]
    A. K. Larsson, L. Stenberg, and S. Liden, “Crystal structure modulation in η-Cu6Sn5,” Z. Kristallogr., 210 (11), 832–837 (1995).CrossRefGoogle Scholar
  7. [7]
    H. K. Kim and K. N. Tu, “Rate of consumption of Cu soldering accompanied by ripening,” Appl. Phys. Lett., 67, 2002–2004 (1995).CrossRefGoogle Scholar
  8. [8]
    C. Y. Liu and K. N. Tu, “Morphology of wetting reactions of SnPb alloys on Cu as a function of alloy composition,” J. Mater. Res., 13, 37–44 (1998).Google Scholar
  9. [9]
    C. Y. Liu and K. N. Tu, “Reactive flow of molten Pb(Sn) alloys in Si grooves coated with Cu film,” Phys. Rev. E, 58, 6308–6311 (1998).CrossRefGoogle Scholar
  10. [10]
    F. G. Yost and A. D. Romig, Jr., in “Electronic Packaging Materials Science III,” R. Jaccodine, K. A. Jackson, and R. C. Subdahl (Eds.), Materials Research Society Symp. Proc., 108, Pittsburgh, PA (1988).Google Scholar
  11. [11]
    W. J. Boettinger, C. A. Handwerker, and U. R. Kattner, “Reactive wetting and intermetallic formation,” in “The Mechanics of Solder Alloy Wetting and Spreading,” F. G. Yost, F. M. Hosking, and D. R. Frear (Eds.), Van Nostrand Reinhold, New York (1993).Google Scholar
  12. [12]
    J. Gorlich, G. Schmidt, and K. N. Tu, “On the mechanism of the binary Cu/Sn solder reaction,” Appl. Phys. Lett., 86, 053106–1 to –3 (2005).CrossRefGoogle Scholar
  13. [13]
    L. Kaufman and H. Bernstein, “Computer Calculation of Phase Diagram,” Academic Press, New York (1970).Google Scholar
  14. [14]
    J.-H. Shim, C.-S. Oh, B.-J. Lee, and D. N. Lee, “Thermodynamic assessment of the Cu-Sn system,” Z. Metallkd., 87, 205–212 (1996).Google Scholar
  15. [15]
    A. Bolcavage, C. R. Kao, S. L. Chen, and Y. A. Chang, “Thermodynamic calculation of phase stability between copper and lead-indium solder,” in Proc. Applications of Thermodynamics in the Synthesis and Processing of Materials, Oct. 2–6, 1994, Rosemont, IL, P. Nash and B. Sundman (Eds.), TMS, Warrendale, PA, pp. 171–185 (1995).Google Scholar
  16. [16]
    V. C. Marcotte and K. Schroeder, “Cu-Sn-Pb phase diagram,” in Proc. Thirteenth North American Thermal Analysis Society, A. R. McGhie (Ed.), North American Thermal Analysis Society, 1984, pp. 294.Google Scholar
  17. [17]
    H. Ohtani, K. Okuda, and K. Ishida, “Thermodynamic study of phase equilibria in the Pb-Sn-Sb system,” J. Phase Equil., 16, 416–429 (1995).CrossRefGoogle Scholar
  18. [18]
    K. N. Tu, T. Y. Lee, J. W. Jang, L. Li, D. R. Frear, K. Zeng, and J. K. Kivilahti, “Wetting reaction vs. solid state aging of eutectic SnPb on Cu,” J. Appl. Phys. 89, 4843–4849 (2001).CrossRefGoogle Scholar
  19. [19]
    K. N. Tu, F. Ku, and T. Y. Lee, “Morphological stability of solder reaction products in flip chip technology,” J. Electron. Mater., 30, 1129–1132 (2001).CrossRefGoogle Scholar
  20. [20]
    T. Y. Lee, W. J. Choi, K. N. Tu, J. W. Jang, S. M. Kuo, J. K. Lin, D. R. Frear, K. Zeng, and J. K. Kivilahti, “Morphology, kinetics, and thermodynamics of solid state aging of eutectic SnPb and Pb-free solders (SnAg, SnAgCu, and SnCu) on Cu,” J. Mater. Res., 17, 291–301 (2002).CrossRefGoogle Scholar
  21. [21]
    G. V. Kidson, “Some aspects of the growth of different layers in binary systems,” J. Nucl. Mater., 3, 21 (1961).CrossRefGoogle Scholar
  22. [22]
    U. Gosele and K.N. Tu, “Growth kinetics of planar binary diffusion couples: Thin film case versus bulk cases,” J. Appl. Phys., 53, 3252 (1982).CrossRefGoogle Scholar
  23. [23]
    H. K. Kim and K. N. Tu, “Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening,” Phys. Rev. B, 53, 16027–16034 (1996).CrossRefGoogle Scholar
  24. [24]
    A. M. Gusak and K. N. Tu, “Kinetic theory of flux driven ripening,” Phys. Rev. B, 66, 115403 (2002).CrossRefGoogle Scholar
  25. [25]
    I. M. Lifshiz and V. V. Slezov, J. Phys. Chem. Solids, 19, 35 (1961).CrossRefGoogle Scholar
  26. [26]
    C. Wagner, Z. Electrochem., 65, 581 (1961).Google Scholar
  27. [27]
    V. V. Slezov, “Theory of Diffusion Decomposition of Solid Solutions,” Harwood Academic Publishers, pp. 99–112 (1995).Google Scholar
  28. [28]
    D. Turnbull, “Metastable structures in metallurgy,” Metall. Trans. A, 12, 695–708 (1981).CrossRefGoogle Scholar
  29. [29]
    S. Herd, K.N. Tu, and K.Y. Ahn, “Formation of an amorphous Rh-Si alloy by interfacial reaction between amorphous Si and crystalline Rh thin films,” Appl. Phys. Lett., 42, 597 (1983).CrossRefGoogle Scholar
  30. [30]
    R. B. Schwarz and W. L. Johnson, Phys. Rev. Lett., 51, 415 (1983).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • King-Ning Tu
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations