Skip to main content

Improvement in the Measurement of Spin-Lattice Relaxation Time in Electron Paramagnetic Resonance

  • Chapter
Computational and Instrumental Methods in EPR

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 25))

Abstract

The spin-lattice, or longitudinal, relaxation time T 1 plays an important role in magnetic resonance because it provides significant information about the coupling of a paramagnetic ion with its environment via its dependence on such factors as temperature, frequency (Scott & Jefferies, 1962; Kurtz & Stapleton, 1980), spin concentration (Gill, 1962), and magnetic field (Albart & Pescia, 1980; Nogatchewsky et al., 1977). But the measurement of electronic spin-lattice relaxation times is problematic because the times span the range from the very short (10−15 s) to the very long (1 s; cf. Pescia, 1966). The one microsecond spin-lattice relaxation time demarcates “short” from “long” relaxation times, which traditionally have each required their own methods of measurement. For example, long relaxation times are measured by using cw-EPR spectrometers to record spectra at multiple power levels near and under the condition of saturation; the spin-spin and spin-lattice relaxation times are then calculated from lineshape parameters. But the so-called short relaxation times are not measurable on the time scale of common cw-EPR instrumental detection methods. Short spin-lattice relaxation times are therefore measured by resorting to different (i.e., transient) magnetic resonance techniques such as pulsed saturation, spin echo (cf. Poole & Farach, 1971), and amplitude modulation (Hervé & Pescia, 1960a,b).

This chapter is a partial translation of the doctoral thesis of Robert Lopez entitled, “Amélioration de la mesure du temps de relaxation spin-réseau T1 en résonance paramagnétique électronique: Application a l’acetat de cuivre calcium dilué et un verre boraté dopé Fe2O3,” Paul Sabatier University, Toulouse, France (1993) with permission.

Translated by Sushil K. Misra

Physics Department, Concordia University, 1455 de Maisonneuve Boulevard West, Montreal, Quebec H3G 1M8, Canada

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. Literature Cited

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lopez, R. (2006). Improvement in the Measurement of Spin-Lattice Relaxation Time in Electron Paramagnetic Resonance. In: Computational and Instrumental Methods in EPR. Biological Magnetic Resonance, vol 25. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-38880-9_2

Download citation

Publish with us

Policies and ethics