Skip to main content

Design and Implementation Issues

  • Chapter
Book cover Clinical Decision Support Systems

Part of the book series: Health Informatics ((HI))

Abstract

The early 1970s were a time of great optimism for researchers in the field of medical artificial intelligence. The initial successes of systems such as MYCIN,1 CASNET,2 and the Leeds abdominal pain system3 made it reasonable to assume that it was only a matter of time until computers became a standard part of physicians’ diagnostic armamentarium. Over the past few years, the emphasis in clinical decision support has shifted from its initial narrow focus on diagnostic expert systems to a much broader range of applications. Increasingly, clinicians have access to alerts, reminders, and patient-specific advice for such common tasks as prescription writing and test ordering.4,5,6,7 Despite these gains, CDSS are not yet common in patient care settings.8 This chapter will examine the key design and implementation concerns that must be addressed if these systems are to realize their full potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shortliffe EH. Computer-based medical consultations: MYCIN. New York: Elsevier; 1976.

    Google Scholar 

  2. Weiss SM, Kulikowski CA, Amarel S, Safir A. A model-based method for computer-aided medical decision making. Artif Intell 1978;11:145–172.

    Article  Google Scholar 

  3. de Dombal FT, Leaper DJ, Staniland JR, McCann AP, Horrocks JC. Computer-aided diagnosis of acute abdominal pain. Br Med J 1972;2:9–13.

    PubMed  Google Scholar 

  4. Payne TH, Hoey PJ, Nichol P, Lovis C. Preparation and use of preconstructed orders, order sets, and order menus in a computerized provider order entry system. J Am Med Inform Assoc 2003;10:322–329.

    Article  PubMed  Google Scholar 

  5. Kaushal R, Shojania KG, Bates DW. Effects of computerized physician order entry and clinical decision support systems on medication safety: a systematic review. Arch Intern Med 2003;163:1409–1416.

    Article  PubMed  Google Scholar 

  6. Foster RA, Antonelli PJ. Computerized physician-order entry: are we there yet? Otolaryngol Clin North Am 2002;35:1237–1243, vii.

    Article  PubMed  Google Scholar 

  7. Shu K, Boyle D, Spurr C, et al. Comparison of time spent writing orders on paper with computerized physician order entry. Medinfo 2001;10:1207–1211.

    PubMed  CAS  Google Scholar 

  8. Ash JS, Gorman PN, Seshadri V, Hersh WR. Computerized physician order entry in U.S. hospitals: results of a 2002 survey. J Am Med Inform Assoc 2004;11:95–99.

    Article  PubMed  Google Scholar 

  9. Engle RL Jr. Attempts to use computers as diagnostic aids in medical decision making: a thirty-year experience. Perspect Biol Med 1992;35:207–219.

    PubMed  Google Scholar 

  10. Berner ES, Webster GD, Shugerman AA, et al. Performance of four computer-based diagnostic systems. N Engl J Med 1994;330:1792–1796.

    Article  PubMed  CAS  Google Scholar 

  11. Miller R, Masarie FE, Myers J. Quick medical reference (QMR) for diagnostic assistance. MD Comput 1986;3:34–48.

    PubMed  CAS  Google Scholar 

  12. Warner HR Jr. Iliad: moving medical decision-making into new frontiers. Methods Inf Med 1989;28:370–372.

    PubMed  Google Scholar 

  13. Barnett GO, Cimino JJ, Hupp JA, Hoffer EP. DXplain-an evolving diagnostic decision-support system. JAMA 1987;258:67–74.

    Article  PubMed  CAS  Google Scholar 

  14. Heckerman DE, Horvitz EJ, Nathwani BN. Toward normative expert systems: part I. The Pathfinder project. Methods Inf Med 1992;31:90–105.

    PubMed  CAS  Google Scholar 

  15. Shortliffe EH. The adolescence of AI in medicine: will the field come of age in the 90s? Artif Intell Med 1993;5:93–106.

    Article  PubMed  CAS  Google Scholar 

  16. Clayton PD, Hripcsak G. Decision support in healthcare. Int J Biomed Comput 1995;39:59–66.

    Article  PubMed  CAS  Google Scholar 

  17. Heathfield HA, Wyatt J. Philosophies for the design and development of clinical decision-support systems. Methods Inf Med 1993;32:1–8.

    PubMed  CAS  Google Scholar 

  18. Buchanan BG, Feigenbaum EA. Dendral and Metadendral: their applications and dimension. Artif Intell 1978;11:5–24.

    Article  Google Scholar 

  19. McDermott J. R1: A rule-based configurer of computer systems. Artif Intell 1982;19:39–88.

    Article  Google Scholar 

  20. Russell S, Norvig P. Artificial intelligence: a modern approach, 2nd ed. Upper Saddle River, NJ: Prentice-Hall; 2003.

    Google Scholar 

  21. Luger GF, Stubblefield WA. Artificial intelligence and the design of expert systems. Redwood City, CA: Benjamin/Cummings Publishing Company, Inc.; 1989.

    Google Scholar 

  22. Minsky M. A framework for representing knowledge. In: Haugeland J, ed. Mind design. Cambridge, MA: MIT Press; 1981:95–128.

    Google Scholar 

  23. Kokol P, Mernik M, Zavrsnik J, Kancler K, Malcic I. Decision trees based on automatic learning and their use in cardiology. J Med Syst 1994;18:201–206.

    Article  PubMed  CAS  Google Scholar 

  24. Baxt WG. Use of an artificial neural network for the diagnosis of acute myocardial infarction. Ann Intern Med 1991;115:843–848.

    PubMed  CAS  Google Scholar 

  25. Pinciroli F, Combi C, Pozzi G. Object oriented DBMS techniques for time oriented medical records. Medinfo 1992;17:231–241.

    CAS  Google Scholar 

  26. Frost RD, Gillenson ML. Integrated clinical decision support using an object-oriented database management system. Methods Inf Med 1993;32: 154–160.

    PubMed  CAS  Google Scholar 

  27. Long W. Medical diagnosis using a probabilistic causal network. Appl Artif Intell 1989;3:367–383.

    Google Scholar 

  28. Patil R, Szolovits P, Schwartz W. Causal understanding of patient illness and diagnosis. Proc Seventh Int Joint Conf Artif Intell; Vancouver Canada 1981: 893–899.

    Google Scholar 

  29. Allen JF. Towards a general theory of action and time. Artif Intell Med 1984;23:123–154.

    Article  Google Scholar 

  30. Shahar Y, Musen M. A temporal-abstraction system for patient monitoring. Proc Annu Symp Comput Appl Med Care 1992:121–127.

    Google Scholar 

  31. Kahn MG, Fagan LM, Sheiner LB. Model-based interpretation of time-varying medical data. Proc Annu Symp Comput Appl Med Care 1989:28–32.

    Google Scholar 

  32. Kohane IS. Temporal reasoning in medical expert systems. Technical Report 389, Laboratory of Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 1987.

    Google Scholar 

  33. Aliferis CF, Cooper GF, Miller RA, Buchanan BG, Bankowitz R, Guise N.A temporal analysis of QMR. J Am Med Inform Assoc 1996;3:79–91.

    PubMed  CAS  Google Scholar 

  34. Reiter R. A logic for default reasoning. Artif Intell 1980;13:81–132.

    Article  Google Scholar 

  35. Patil R. Review of causal reasoning in medical diagnosis. Proc Annu Symp Comput Appl Med Care 1986:11–16.

    Google Scholar 

  36. Miller RA. Internist-1/Caduceus: problems facing expert consultant programs. Methods Inf Med 1984;23:9–14.

    PubMed  CAS  Google Scholar 

  37. Laursen P. Event detection on patient monitoring data using causal probabilistic networks. Methods Inf Med 1994;33:111–115.

    PubMed  CAS  Google Scholar 

  38. Rutledge GW, Andersen SK, Polaschek JX, Fagan LM. A belief network model for interpretation of ICU data. Proc Annu Symp Comput Appl Med Care 1990:785–789.

    Google Scholar 

  39. Pradhan M, Provan G, Henrion M. Experimental analysis of large belief networks for medical diagnosis. Proc Annu Symp Comput Appl Med Care 1994: 775–779.

    Google Scholar 

  40. Pearl J. Probabilistic reasoning in intelligent systems: networks of plausible inference. San Mateo, CA: Morgan-Kaufman; 1988.

    Google Scholar 

  41. Sonnenberg FA, Hagerty CG, Kulikowski CA. An architecture for knowledge-based construction of decision models. Med Decis Making 1994;14:27–39.

    Article  PubMed  CAS  Google Scholar 

  42. Cooper G. Probabilistic and decision-theoretic systems in medicine. Artif Intell Med 1993;5:289–292.

    Article  PubMed  CAS  Google Scholar 

  43. Zadeh LA. Fuzzy logic, neural networks, and soft computing. Commun ACM 1994;37:77–84.

    Article  Google Scholar 

  44. Zimmerman HJ. Fuzzy set theory and its applications, 2nd ed. Amsterdam: Kluwer-Nijhoff; 1990.

    Google Scholar 

  45. Maiers JE. Fuzzy set theory and medicine: the first twenty years. Proc Annu Symp Comput Appl Med Care 1985:325–329.

    Google Scholar 

  46. Shafer G. A mathematical theory of evidence. Princeton, NJ: Princeton University Press; 1976.

    Google Scholar 

  47. McDermott D, Doyle J. Non-monotonic logic-I. Artif Intell 1980;13:41–72.

    Article  Google Scholar 

  48. Kolodner JL, Leake DB. A tutorial introduction to case-based reasoning. In: Leake D, ed. Case-based reasoning: experiences, lessons and future directions. Cambridge, MA: AAAI Press/MIT Press; 1996:31–67.

    Google Scholar 

  49. Stamper R, Todd BS, Macpherson P. Case-based explanation for medical diagnostic programs, with an example from gynaecology. Methods Inf Med 1994;33: 205–213.

    PubMed  CAS  Google Scholar 

  50. Koton P. Reasoning about evidence in causal explanations. Proc Seventh Nat Conf Artif Intell, Vancouver, Canada, 1988:256–261.

    Google Scholar 

  51. Gruber, TR. A translation approach to portable ontologies. Knowl Acquis 1993;2:199–220.

    Article  Google Scholar 

  52. Gruninger M, Lee J. Ontology applications and design. Commun ACM 2002;45:39–41.

    Article  Google Scholar 

  53. Uschold M, Jasper R. A Framework for understanding and classifying ontology applications. Proc IJCAI-99 Workshop on Ontologies and Problem-Solving Methods, Intl Joint Conferences on Artificial Intelligence, Stockholm, Sweden, 1999.

    Google Scholar 

  54. Campbell KE, Oliver DE, Spackman KA, Shortliffe EH. Representing thoughts, words, and things in the UMLS. J Am Med Inform Assoc 1998;5: 421–431.

    PubMed  CAS  Google Scholar 

  55. Goldberg H, Goldsmith D, Law V, Keck K, Tuttle M, Safran C. An evaluation of UMLS as a controlled terminology for the Problem List Toolkit. Medinfo 1998;9:609–612.

    PubMed  Google Scholar 

  56. McCray AT, Nelson SJ. The representation of meaning in the UMLS. Methods Inf Med 1995;34:193–201.

    PubMed  CAS  Google Scholar 

  57. Burgun A, Bodenreider O. Mapping the UMLS Semantic Network into general ontologies. Proc AMIA Symp 2001:81–85.

    Google Scholar 

  58. Rector AL, Nowlan WA. The GALEN project. Comput Methods Programs Biomed 1994;45:75–78.

    Article  PubMed  CAS  Google Scholar 

  59. Rector AL, Rogers JE. Ontological issues in using description logic to represent medical concepts: experience from GALEN. IMIA, Phoenix, AZ; 1999 (also available at: www.opengalen.org/resources.html).

    Google Scholar 

  60. Rector AL, Bechhofer S, Goble CA, Horrocks I, Nowlan WA, Solomon WD. The GRAIL concept modelling language for medical terminology. Artif Intell Med 1997;9:139–171.

    Article  PubMed  CAS  Google Scholar 

  61. Wang AY, Barrett JW, Bentley T, et al. Mapping between SNOMED RT and Clinical Terms version 3: a key component of the SNOMED CT development process. Proc AMIA Symp 2001:741–745.

    Google Scholar 

  62. Spackman KA, Campbell KE, Cote RA. SNOMED RT: a reference terminology for health care. Proc AMIA Annu Fall Symp 1997:640–644.

    Google Scholar 

  63. Chisolm J. The read classification. Br Med J 1990;300:1092–1096.

    Article  Google Scholar 

  64. Spackman KA. Normal forms for description logic expressions of clinical concepts in SNOMED RT. Proc AMIA Symp 2001:627–631.

    Google Scholar 

  65. Bakken S, Warren JJ, Lundberg C, et al. An evaluation of the usefulness of two terminology models for integrating nursing diagnosis concepts into SNOMED Clinical Terms. Int J Med Inform 2002;68:71–77.

    Article  PubMed  CAS  Google Scholar 

  66. Spackman KA. Integrating sources for a clinical reference terminology: experience linking SNOMED to LOINC and drug vocabularies. Medinfo 1998;9: 600–603.

    PubMed  Google Scholar 

  67. Denny M. Ontology building: a survey of editing tools. (Accessed December 17, 2003 at http://www.xml.com/pub/a/2002/11/06/ontologies.html.)

    Google Scholar 

  68. Noy NF, McGuinness DL. Ontology development 101: a guide to creating your first ontology. (Accessed July 17, 2006 at http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html.)

    Google Scholar 

  69. Holsapple CW, Joshi KD. A Collaborative approach to ontology design. Commun ACM 2002;45:42–47.

    Article  Google Scholar 

  70. Guarino N, Welty C. Evaluating ontological decisions with ontoclean. Commun ACM 2002;45:61–65.

    Article  Google Scholar 

  71. Dick RS, Steen EB, eds. The computer-based patient record: an essential technology for health care. National Academy Press, Washington, DC; 1992.

    Google Scholar 

  72. Hammond WE. Call for a standard clinical vocabulary. J Am Med Inform Assoc 1997;4:254–255.

    PubMed  CAS  Google Scholar 

  73. Rose JS, Fisch BJ, Hogan WR, et al. Common medical terminology comes of age, part two: current code and terminology sets—strengths and weaknesses. J Healthc Inf Manage 2001;15:319–330.

    CAS  Google Scholar 

  74. Liu GC, Cooper JG, Schoeffler KM, Hammond WE. Standards for the electronic health record, emerging from health care’s Tower of Babel. Proc AMIA Symp 2001:388–392.

    Google Scholar 

  75. Peden AH. An overview of coding and its relationship to standardized clinical terminology. Top Health Inf Manage 2000;21:1–9.

    PubMed  CAS  Google Scholar 

  76. Fenton SH. Clinical vocabularies and terminologies: impact on the future of health information management. Top Health Inf Manage 2000;21:74–80.

    PubMed  CAS  Google Scholar 

  77. Chute CG, Cohn SP, Campbell JR. A framework for comprehensive health terminology systems in the United States: development guidelines, criteria for selection, and public policy implications. ANSI Healthcare Informatics Standards Board Vocabulary Working Group and the Computer-Based Patient Records Institute Working Group on Codes and Structures. J Am Med Inform Assoc 1998;5:503–510.

    PubMed  CAS  Google Scholar 

  78. Elkin PL, Brown SH, Carter J, et al. Guideline and quality indicators for development, purchase and use of controlled health vocabularies. Int J Med Inf 2002;68:175–186.

    Article  Google Scholar 

  79. Van Bemmel JH, Musen MA, eds. Handbook of medical informatics. Heidelberg: Springer-Verlag; 1997.

    Google Scholar 

  80. Gersenovic M. The ICD family of classifications. Methods Inf Med. 1995; 34:172–175.

    PubMed  CAS  Google Scholar 

  81. International Statistical Classification of Diseases and Related Health Problems, 10th revision. Geneva: World Health Organization; 1993.

    Google Scholar 

  82. Stausberg J, Lang H, Obertacke U, Rauhut F. Classifications in routine use: lessons from ICD-9 and ICPM in surgical practice. J Am Med Inform Assoc. 200;8:92–100.

    Google Scholar 

  83. Movig KL, Leufkens HG, Lenderink AW, Egberts AC. Validity of hospital discharge international classification of diseases (ICD) codes for identifying patients with hyponatremia. J Clin Epidemiol 2003;56:530–535.

    Article  PubMed  CAS  Google Scholar 

  84. Geraci JM, Ashton CM, Kuykendall DH, Johson ML, Wu L. International classification of diseases, 9th revision, clinical modification codes in discharge abstracts are poor measures of complication occurrence in medical inpatients. Med Care 1997;35:589–602.

    Article  PubMed  CAS  Google Scholar 

  85. Current Procedural Terminology 2000. Chicago: American Medical Association; 2000.

    Google Scholar 

  86. Huff SM, Rocha RA, McDonald CJ, et al. Development of the logical observation identifier names and codes (LOINC) vocabulary. J Am Med Inform Assoc 1998;5:276–292.

    PubMed  CAS  Google Scholar 

  87. McDonald CJ, Huff SM, Suico JG, et al. LOINC, a universal standard for identifying laboratory observations: a 5-year update. Clin Chem 2003;49: 624–633.

    Article  PubMed  CAS  Google Scholar 

  88. Forrey AW, McDonald CJ, DeMoor G, et al. Logical observation identifier names and codes (LOINC) database: a public use set of codes and names for electronic reporting of clinical laboratory test results. Clin Chem 1996;42: 81–90.

    PubMed  CAS  Google Scholar 

  89. Cimino JJ. Desiderata for controlled medical vocabularies in the twenty-first century. Methods Inf Med 1998;37:394–403.

    PubMed  CAS  Google Scholar 

  90. Rector AL. Clinical terminology: why is it so hard? Methods Inf Med 1999;38:239–252.

    PubMed  CAS  Google Scholar 

  91. van Ginneken AM, Verkoijen MJ. A multi-disciplinary approach to a user interface for structured data entry. Medinfo 2001;10:693–697.

    PubMed  Google Scholar 

  92. Warren JJ, Collins J, Sorrentino C, Campbell JR. Just-in-time coding of the problem list in a clinical environment. Proc AMIA Symp 1998:280–284.

    Google Scholar 

  93. Elkin PL, Tuttle M, Keck K, Campbell K, Atkin G, Chute CG. The role of compositionality in standardized problem list generation. Medinfo 1998;9: 660–664.

    PubMed  Google Scholar 

  94. McKnight LK, Elkin PL, Ogren PV, Chute CG. Barriers to the clinical implementation of compositionality. Proc AMIA Symp 1999:320–324.

    Google Scholar 

  95. Rector AL, Solomon WD, Nowlan WA, Rush TW, Zanstra PE, Claassen WM. A terminology server for medical language and medical information systems. Methods Inf Med 1995;34:147–157.

    PubMed  CAS  Google Scholar 

  96. Chute CG, Elkin PL, Sherertz DD, Tuttle MS. Desiderata for a clinical terminology server. Proc AMIA Symp 1999:42–46.

    Google Scholar 

  97. Dolin RH, Spackman KA, Markwell D. Selective retrieval of pre-and post-coordinated SNOMED concepts. Proc AMIA Symp. 2002:210–214.

    Google Scholar 

  98. Spackman KA. Normal forms for description logic expressions of clinical concepts in SNOMED RT. Proc AMIA Symp 2001:627–631.

    Google Scholar 

  99. Weed LL. Knowledge coupling: new premises and new tools for medical care and education. New York: Springer-Verlag; 1991.

    Google Scholar 

  100. Carter JH, ed. Electronic medical records: a guide for clinicians and administrators. Philadelphia: American College of Physicians; 2001.

    Google Scholar 

  101. Kuperman GJ, Sittig DF, Shabot MM. Clinical decision support for hospital and critical care. J Healthc Inf Manag 1999;13:81–96.

    Google Scholar 

  102. Overage JM, Tierney WM, McDonald CJ. Clinical decision support in ambulatory care: tools, trials, tribulations. J Healthc Inf Manag 1999;13:67–79.

    Google Scholar 

  103. Aranow M. What works: clinical information systems. Order entry rules. Healthcare enterprise achieves physician acceptance, reduced medication errors and improved patient outcomes through CIS and CPOE technology. Health Manag Technol 2002;7:34, 38.

    Google Scholar 

  104. Murray MD, Harris LE, Overhage JM, et al. Failure of computerized treatment suggestions to improve health outcomes of outpatients with uncomplicated hypertension: results of a randomized controlled trial. Pharmacotherapy 2004;3:324–337.

    Article  Google Scholar 

  105. Subramanian U, Fihn SD, Weinberger M, et al. A controlled trial of including symptom data in computer-based care suggestions for managing patients with chronic heart failure. Am J Med 2004;6:375–384.

    Article  Google Scholar 

  106. Tierney WM, Overhage JM, Murray MD, et al. Effects of computerized guidelines for managing heart disease in primary care. J Gen Intern Med 2003;18: 967–976.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Carter, J.H. (2007). Design and Implementation Issues. In: Berner, E.S. (eds) Clinical Decision Support Systems. Health Informatics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-38319-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-38319-4_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-33914-6

  • Online ISBN: 978-0-387-38319-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics