Skip to main content

Properties of ferroelectric ultrathin films from first principles

  • Chapter
Frontiers of Ferroelectricity

Abstract

Advances in first-principles computational approaches have, over the past ten years, made possible the investigation of basic physical properties of simple ferroelectric systems. Recently, first-principles techniques also proved to be powerful methods for predicting finite-temperature properties of solid solutions in great details. Consequently, bulk perovskites are rather well understood nowadays. On the other hand, one task still remains to be accomplished by ab-initio methods, that is, an accurate description and a deep understanding of ferroelectric nanostructures. Despite the fact that nanometer scale ferroelectric materials have gained widespread interest both technologically and scientifically (partly because of novel effects arising in connection with the reduction of their spatial extension), first-principles-based calculations on ferroelectric nanostructures are rather scarce. For instance, the precise effects of the substrate, growth orientation, surface termination, boundary conditions and thickness on the finite-temperature ferroelectric properties of ultrathin films are not well established, since their full understandings require (i) microscopic insights on nanoscale behavior that are quite difficult to access and analyze via experimental probes, and (ii) the development of new computational schemes. One may also wonder how some striking features exhibited by some bulk materials evolve in the corresponding thin films. A typical example of such feature is the morphotropic phase boundary of various solid solutions, where unusual low-symmetry phases associated with a composition-induced rotation of the spontaneous polarization and an enhancement of dielectric and piezoelectric responses were recently discovered. In this paper, recent findings resulting from the development and use of numerical first-principles-based tools on ferroelectric ultrathin films are discussed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. RAMESH, S. AGGARWAL and O. AUCIELLO, Mat. Sc. Eng. 32 (2001) 191.

    Article  Google Scholar 

  2. N. SETTER (Ed.), in “Piezoelectric materials in devices: extended reviews on current and emerging piezoelectric materials, technology, and applications” (EPFL Swiss Federal Institute of Technology, 2002).

    Google Scholar 

  3. J. SCOTT, in “Ferroelectric memories” (Springer Verlag, Berlin, 2000).

    Google Scholar 

  4. K. UCHINO, in “Piezoelectric Actuators and Ultrasonic Motors” (Kluwer Academic Publishers, Boston, 1996).

    Google Scholar 

  5. S.-E. PARK and T. R. SHROUT, J. Appl. Phys. 82 (1997) 1804.

    Article  CAS  Google Scholar 

  6. R. F. SERVICE, Science 275 (1997) 1878.

    Article  CAS  Google Scholar 

  7. B. NOHEDA, Appl. Phys. Lett. 74 (1999) 2059.

    Article  CAS  Google Scholar 

  8. L. BELLAICHE, A. GARCIA and D. VANDERBILT, Phys. Rev. Lett. 84 (2000) 5427.

    Article  CAS  Google Scholar 

  9. L. BELLAICHE, A. GARCIA and D. VANDERBILT, Ferroelectrics 266, 41 (2002).

    Article  Google Scholar 

  10. B. NOHEDA, Current Opinion in Solid State and Materials Science 6 (2002) 27.

    Article  CAS  Google Scholar 

  11. H. FU and R. E. COHEN, Nature 403 (2000) 281.

    Article  CAS  Google Scholar 

  12. I. GRINBERG, V. R. COOPER and A. M. RAPPE, Nature 419 (2002) 909.

    Article  CAS  Google Scholar 

  13. Z. WU and H. KRAKAUER, Phys. Rev. B 68 (2003) 014112.

    Article  Google Scholar 

  14. A. OHTOMO, D. A. MULLER, J. L. GRAZUL and H. Y. HWANG, Nature 419 (2002) 378.

    Article  CAS  Google Scholar 

  15. D. WOLPERT, K. KOROLEV, S. SACHS, J. KNAB, W. COX, J. CERNE, A. G. MARKELZ, T. ZHAO, R. RAMESH and B. H. MOECKLY, Physica E: Low-dimensional Systems and Nanostructures 19 (2003) 236.

    Article  CAS  Google Scholar 

  16. E. D. MISHINA, V. I. STADNICHUK, A. S. SIGOV, Y. I. GOLOVKO, V. M. MUKHOROTOV, S. NAKABAYASHI, H. MASUDA, D. HASHIZUME and A. NAKAO, Physica E: Low-dimensional Systems and Nanostructures 25 (2004) 35.

    Article  CAS  Google Scholar 

  17. D. G. SCHLOM, J. H. HAENI, J. LETTIERI, C. D. THEIS, W. TIAN, J. C. JIANG and X. Q. PAN, Materials Science and Engineering B 87 (2001) 282.

    Article  Google Scholar 

  18. A. LIN, X. HONG, V. WOOD, A. A. VEREVKIN, C. H. AHN, R. A. MCKEE, F. J. WALKER and E. D. SPECHT, Applied Physics Letters 78 (2001) 2034.

    Article  CAS  Google Scholar 

  19. Y. WANG, C. GANPULE, B. T. LIU, H. LI, K. MORI, B. HILL, M. WUTTIG, R. RAMESH, J. FINDER, Z. YU, et al. Appl. Phys. Lett. 80 (2002) 97.

    Article  CAS  Google Scholar 

  20. K. EISENBEISER, J. M. FINDER, Z. YU, J. RAMDANI, J. A. CURLESS, J. A. HALLMARK, R. DROOPAD, W. J. OOMS, L. SALEM, and S. BRADSHAW, et al., Appl. Phys. Lett. 76 (2000) 1324.

    Article  CAS  Google Scholar 

  21. O. AUCIELLO, J. F. SCOTT and R. RAMESH, Physics Today 51 (1998) 22.

    CAS  Google Scholar 

  22. J. F. SCOTT, Ann. Rev. Mat. Sci. 28 (1998) 79.

    Article  CAS  Google Scholar 

  23. M. E. LINES and A. M. GLASS, “Principles and Applications of Ferroelectrics and Related Materials” (Clarendon Press, 1977).

    Google Scholar 

  24. T. TYBELL, C. H. AHN and J.-M. TRISCONE, Appl. Phys. Lett. 75 (1999) 856.

    Article  CAS  Google Scholar 

  25. A. V. BUNE, V. M. FRIDKIN, S. DUCHARME, L. M. BLINOV, S. P. PALTO, A. V. SOROKIN, S. G. YUDIN and A. ZLATKIN, Nature 391 (1998) 874.

    Article  CAS  Google Scholar 

  26. D. D. FONG, G. B. STEPHENSON, S. K. STREIFFER, J. A. EASTMAN, O. AUCIELLO, P. H. FUOSS and C. THOMPSON, Science 304 (2004) 1650.

    Article  CAS  Google Scholar 

  27. P. GHOSEZ and K. M. RABE, Appl. Phys. Lett. 76 (2000) 2767.

    Article  CAS  Google Scholar 

  28. J. JUNQUERA AND P. GHOSEZ, Nature 422 (2003) 506.

    Article  CAS  Google Scholar 

  29. S. TINTE AND M. G. STACHIOTTI, Phys. Rev. B 64 (2001) 235403.

    Article  Google Scholar 

  30. H. FU and L. BELLAICHE, Phys. Rev. Lett. 91 (2003) 257601.

    Article  Google Scholar 

  31. B. MEYER and D. VANDERBILT, Phys. Rev. B 63 (2001) 205426.

    Article  Google Scholar 

  32. B. MEYER, J. PADILLA and D. VANDERBILT, Faraday Discussions 114 (1999) 395.

    Article  CAS  Google Scholar 

  33. R. E. COHEN, J. Phys. Chem. Sol. 57 (1996) 1393.

    Article  CAS  Google Scholar 

  34. R. COHEN, Ferroelectrics 194 (1997) 323.

    Article  CAS  Google Scholar 

  35. L. FU, E. YASCHENKO, L. RESCA and R. RESTA, Phys. Rev. B 60 (1999) 2697.

    Article  CAS  Google Scholar 

  36. S. K. STREIFFER, J. A. EASTMAN, D. D. FONG, C. THOMPSON, A. MUNKHOLM, M. V. R. MURTY, O. AUCIELLO, G. R. BAI and G. B. STEPHENSON, Phys. Rev. Lett. 89 (2002) 067601.

    Article  CAS  Google Scholar 

  37. A. KOPAL, T. BAHNIK and J. FOUSEK, Ferroelectrics 202 (1997) 267.

    Article  CAS  Google Scholar 

  38. Y. L. LI, S. Y. HU, Z. K. LIU and L. Q. CHEN, Appl. Phys. Lett. 81 (2002) 427.

    Article  CAS  Google Scholar 

  39. R. R. MEHTA, B. D. SILVERMAN and J. T. JACOBS, J. Appl. Phys. 44 (1973) 3379.

    Article  CAS  Google Scholar 

  40. J. JUNQUERA, O. DIEGUEZ, K. M. RABE, P. GHOSEZ, C. LICHTENSTEIGER and J.-M. TRISCONE, in “Fundamental Physics of Ferroelectrics” (NISTIR, Gaitherburg. Colonial Williamsburg, VA, 2004), pp. 86–87.

    Google Scholar 

  41. I. A. KORNEV AND L. BELLAICHE, Phys. Rev. Lett. 91 (2003) 116103.

    Article  Google Scholar 

  42. L. D. LANDAU and E. M. LIFSCHITZ, in “Electrodynamics of Continuous Media.” (Pergamon Press, 1984).

    Google Scholar 

  43. M. D. GLINCHUK, E. A. ELISEEV, V. A. STEPHANOVICH and R. FARHI, J. Appl. Phys. 93 (2003) 1150.

    Article  CAS  Google Scholar 

  44. V. ZHIRNOV, Sov. Phys. JETP 35 (1958) 1175.

    Google Scholar 

  45. N. A. PERTSEV, V. G. KUKHAR, H. KOHLSTEDT and R. WASER, Phys. Rev. B 67 (2003) 054107.

    Article  Google Scholar 

  46. M. G. COTTAM, D. R. TILLEY and B. ZEKS, J. Phys. C: Solid St. Phys. 17 (1984) 1793.

    Article  CAS  Google Scholar 

  47. Y. WANG, W. ZHONG and P. ZHANG, Phys. Rev. B 53 (1996) 11439.

    Article  CAS  Google Scholar 

  48. A. M. GEORGE, J. INIGUEZ and L. BELLAICHE, Nature 413 (2001) 54.

    Article  CAS  Google Scholar 

  49. W. ZHONG, D. VANDERBILT and K. RABE, Phys. Rev. Lett. 73 (1994) 1861.

    Article  CAS  Google Scholar 

  50. W. ZHONG, D. VANDERBILT and K. RABE, Phys. Rev. B 52 (1995) 6301.

    Article  CAS  Google Scholar 

  51. I. A. KORNEV and L. BELLAICHE, Phys. Rev. Lett. 89 (2002) 115502.

    Article  Google Scholar 

  52. A. AL-BARAKATY and L. BELLAICHE, Appl. Phys. Lett. 81 (2002) 2442.

    Article  CAS  Google Scholar 

  53. K. RABE and P. GHOSEZ, Journal of Electroceramics 4 (2000) 379.

    Article  CAS  Google Scholar 

  54. R. KRETSCHMER and K. BINDER, Phys. Rev. B 20 (1979) 1065.

    Article  CAS  Google Scholar 

  55. B. MEYER and D. VANDERBILT, Phys. Rev. B 65 (2002) 104111.

    Article  Google Scholar 

  56. J. M. SOLER, E. ARTACHO, J. D. GALE, A. GARCÁ, J. JUNQUERA, P. ORDEJÓN and D. SÁNCHEZ-PORTAL, J. Phys.: Cond. Matter 14 (2002) 2745.

    Article  CAS  Google Scholar 

  57. O. DIEGUEZ, S. TINTE, A. ANTONS, C. BUNGARO, J. B. NEATON, K. M. RABE and D. VANDERBILT, Phys. Rev. B 69 (2004) 212101.

    Article  Google Scholar 

  58. N. PERTSEV, A. ZEMBILGOTOV and A. TAGANTSEV, Phys. Rev. Lett. 80 (1998) 1988.

    Article  CAS  Google Scholar 

  59. G. KRESSE and J. FURTHMULLER, Phys. Rev. B 54 (1996) 11169.

    Article  CAS  Google Scholar 

  60. G. KRESSE and J. HAFNER, Phys. Rev. B 47 (1993) 558.

    Article  CAS  Google Scholar 

  61. I. KORNEV, H. FU and L. BELLAICHE, Phys. Rev. Lett. 93 (2004) 196104.

    Article  Google Scholar 

  62. L. HE and D. VANDERBILT, Phys. Rev. B 68 (2003) 134103.

    Article  Google Scholar 

  63. Z. WU, N. HUANG, Z. LIU, J. WU, W. DUAN, B.-L. GU and X.-W. ZHANG, Phys. Rev. B 70 (2004) 104108.

    Article  Google Scholar 

  64. E. ALMAHMOUD, Y. NAVTSENYA, I. KORNEV, H. FU and L. BELLAICHE, Phys. Rev. B 70 (2004) 220102(R).

    Article  Google Scholar 

  65. I. NAUMOV, L. BELLAICHE and H. FU, Nature (London) 432 (2004) 737.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Kornev, I.A., Fu, H., Bellaiche, L. (2006). Properties of ferroelectric ultrathin films from first principles. In: Frontiers of Ferroelectricity. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-38039-1_13

Download citation

Publish with us

Policies and ethics