Skip to main content

The relaxor enigma — charge disorder and random fields in ferroelectrics

  • Chapter
Frontiers of Ferroelectricity

Abstract

Substitutional charge disorder giving rise to quenched electric random-fields (RFs) is probably at the origin of the peculiar behavior of relaxor ferroelectrics, which are primarily characterized by their strong frequency dispersion of the dielectric response and by an apparent lack of macroscopic symmetry breaking at the phase transition. Spatial fluctuations of the RFs correlate the dipolar fluctuations and give rise to polar nanoregions in the paraelectric regime as has been evidenced by piezoresponse force microscopy (PFM) at the nanoscale. The dimension of the order parameter decides upon whether the ferroelectric phase transition is destroyed (e.g. in cubic PbMg1/3Nb2/3O3, PMN) or modified towards RF Ising model behavior (e.g. in tetragonal Sr1−x BaxNb2O6, SBN, x ≈ 0.4). Frustrated interaction between the polar nanoregions in cubic relaxors gives rise to cluster glass states as evidenced by strong pressure dependence, typical dipolar slowing-down and theoretically treated within a spherical random bond-RF model. On the other hand, freezing into a domain state takes place in uniaxial relaxors. While at T c non-classical critical behavior with critical exponents ρ ≈ 1.8, β ≈ 0.1 and α ≈ 0 is encountered in accordance with the RF Ising model, below T c ≈ 350 K RF pinning of the walls of frozen-in nanodomains gives rise to non-Debye dielectric response. It is relaxation- and creep-like at radio and very low frequencies, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. E. LINES and A. M. GLASS, in “Principles and Applications of Ferroelectrics and Related Materials” (Clarendon, Oxford, 1977).

    Google Scholar 

  2. L. E. CROSS, Ferroelectrics 76 (1987) 241.

    CAS  Google Scholar 

  3. G. BURNS and F. H. DACOL, Solid State Commun. 48 (1983) 853; Phase Trans. 5 (1985) 261.

    Article  CAS  Google Scholar 

  4. R. B. GRIFFITHS, Phys. Rev. Lett. 23 (1968) 69.

    Google Scholar 

  5. CH. BINEK and W. KLEEMANN, Phys. Rev. B 51 (1995) 12888.

    Article  CAS  Google Scholar 

  6. V. WESTPHAL, W. KLEEMANN and M. D. GLINCHUK, Phys. Rev. Lett. 68 (1992) 847.

    Article  CAS  Google Scholar 

  7. S. B. VAKHRUSHEV, B. E. KVYATKOVSKY, A. A. NABEREZHOV, N. M. OKUNEVA and B. B. TOPERVERG, Ferroelectrics 90 (1989) 173; G. SCHMIDT, H. ARNDT, G. BORCHARDT, J. V. CIEMINSKI, T. PETZSCHE, K. BORMANN, A. STERNBERG, A. ZIRNITE and A. V. ISUPOV, Phys. Stat. Solidi A 63 (1981) 501.

    CAS  Google Scholar 

  8. K. BINDER and A. P. YOUNG, Rev. Mod. Phys. 58 (1986) 801.

    Article  CAS  Google Scholar 

  9. I. IMRY and S. K. MA, Phys. Rev. Lett. 35 (1975) 1399.

    Article  CAS  Google Scholar 

  10. D. P. BELANGER and A. P. YOUNG, J. Magn. Magn. Mater. 100 (1991) 272.

    Article  CAS  Google Scholar 

  11. D. S. FISHER, Phys. Rev. Lett. 56 (1986) 416; A. T. OGIELSKI and D. A. HUSE, Phys. Rev. Lett. 56 (1986) 1298.

    Article  CAS  Google Scholar 

  12. G. A. SMOLENSKI and V. A. ISUPOV, Dokl. Acad. Nauk SSSR 97 (1954) 653.

    Google Scholar 

  13. W. KLEEMANN, J. DEC, P. LEHNEN, T. H. WOIKE and R. PANKRATH, in: “Fundamental Physics of Ferroelectrics 2000”, edited by R. E. Cohen, AIP Conf. Proc. 535 (2000) 26.

    Google Scholar 

  14. G. A. SAMARA, Solid State Physics 56 (2001), edited by H. Ehrenreich and F. Spaepen (Academic Press, New York, 2001) p. 240 and references therein; J. Phys.: Cond. Matter 15 (2003) R367.

    Google Scholar 

  15. D. SHERRINGTON and S. KIRKPATRICK, Phys. Rev. Lett. 35 (1975) 1972.

    Article  Google Scholar 

  16. D. VIEHLAND, M. WUTTIG and L. E. CROSS, Ferroelectrics 120 (1991) 71; Phys. Rev. B 46 (1993) 8003.

    CAS  Google Scholar 

  17. A. BOKOV and Z. G. YE, ibid. 66 (2002) 064103.

    Google Scholar 

  18. P. BONNEAU et al., Solid State Chem. 91 (1991) 350; L. E. CROSS, Ferroelectrics 151 (1994) 305; A. D. HILTON et al., J. Mater. Sci. 25 (1990) 3461; T. EGAMI et al., Ferroelectrics 199 (1997) 103; B. DKHIL et al., Phys. Rev. B 65 (2002) 4104.

    Article  CAS  Google Scholar 

  19. E. HUSSON, M. CHUBB and A. MORELL, Mat. Res. Bull. 23 (1988) 357.

    Article  CAS  Google Scholar 

  20. H. QIAN and L. A. BURSILL, Int. J. Mod. Phys. B 10 (1996) 2027.

    Article  CAS  Google Scholar 

  21. Y. UESU, H. TAZAWA and K. FUJISHIRO, J. Kor. Phys. Soc. 29 (1998) S703.

    Google Scholar 

  22. P. LEHNEN, J. DEC, W. KLEEMANN, TH. WOIKE and R. PANKRATH, Ferroelectrics 268 (2002) 113.

    Article  Google Scholar 

  23. R. BLINC, J. DOLINSEK, A. GREGOROVIC, B. ZALAR, C. FILIPIC, Z. KUTNJAK, A. LEVSTIK and R. PIRC, Phys. Rev. Lett. 83 (1999) 424.

    Article  CAS  Google Scholar 

  24. Z. KUTNJAK, C. FILIPIC, R. PIRC, A. LEVSTIK, R. FARHI and M. EL MARSSI, Phys. Rev. B 59 (1999) 294.

    Article  CAS  Google Scholar 

  25. J. R. OLIVER, R. R. NEURGAONKAR and L. E. CROSS, J. Appl. Phys. 64 (1988) 37.

    Article  CAS  Google Scholar 

  26. W. KLEEMANN, J. DEC, P. LEHNEN, R. BLINC, B. ZALAR and R. PANKRATH, Europhys. Lett. 57 (2002) 14.

    Article  CAS  Google Scholar 

  27. P. LEHNEN, W. KLEEMANN, TH. WOIKE and R. PANKRATH, Eur. Phys. J.B 14 (2000) 633.

    CAS  Google Scholar 

  28. J. DEC, W. KLEEMANN, V. BOBNAR, Z. KUTNJAK, A. LEVSTIK, R. PIRC and R. PANKRATH, Europhys. Lett. 55 (2001) 781.

    Article  CAS  Google Scholar 

  29. W. KLEEMANN, P. LICINIO, TH. WOIKE and R. PANKRATH, Phys. Rev. Lett. 86 (2001) 6014.

    Article  CAS  Google Scholar 

  30. F. M. JIANG and S. KOJIMA, Phys. Rev. B 62 (2000) 8572.

    Article  CAS  Google Scholar 

  31. P. LEHNEN, W. KLEEMANN, TH. WOIKE and R. PANKRATH, ibid. 64 (2001) 224109.

    Article  Google Scholar 

  32. A. A. MIDDLETON and D. S. FISHER, ibid. 65 (2002) 134411.

    Article  Google Scholar 

  33. R. BLINC, A. GREGOROVIC, B. ZALAR, R. PIRC, J. SELIGER, W. KLEEMANN, S. G. LUSHNIKOV and R. PANKRATH, ibid. 64 (2001) 134109.

    Article  Google Scholar 

  34. F. YE, L. ZHOU, S. LAROCHELLE, L. LU, D. P. BELANGER, M. GREVEN and D. LEDERMAN, Phys. Rev. Lett. 89 (2002) 157202.

    Article  CAS  Google Scholar 

  35. Z. KUTNJAK, W. KLEEMANN and R. PANKRATH, Phys. Rev. B. (submitted)

    Google Scholar 

  36. J. FOUSEK and V. JANOVEC, Phys. Stat. Sol. (a) 13 (1966) 105.

    Article  Google Scholar 

  37. L. B. IOFFE and V. M. VINOKUR, J. Phys. C 20 (1987) 6149.

    Article  Google Scholar 

  38. T. NATTERMANN, Y. SHAPIR and I. VILFAN, Phys. Rev. B 42 (1990) 8577.

    Article  Google Scholar 

  39. T. NATTERMANN, V. POKROVSKY and V. M. VINOKUR, Phys. Rev. Lett. 87 (2001) 197005.

    Article  CAS  Google Scholar 

  40. W. KLEEMANN, J. DEC, S. MIGA, TH. WOIKE and R. PANKRATH, Phys. Rev. B 65 (2002) 220101R.

    Article  Google Scholar 

  41. Y. PARK, Solid State Commun. 113 (2000) 379.

    Article  CAS  Google Scholar 

  42. A. K. JONSCHER, in “Dielectric Relaxation in Solids” (Chelsea Dielectric Press, London, 1983).

    Google Scholar 

  43. A. A. FEDORENKO, V. MUELLER and S. STEPANOW, Phys. Rev. B 70 (2004) 224104.

    Article  Google Scholar 

  44. D. DAMJANOVIC, S. S. N. BHARADWAJA and N. SETTER, Adv. Mater. (in print).

    Google Scholar 

  45. W. KLEEMANN, J. DEC and R. PANKRATH, Ferroelectrics 286 (2003) 21.

    Article  CAS  Google Scholar 

  46. J. DEC, W. KLEEMANN and M. ITOH, Ferroelectrics 298 (2004) 163.

    Article  CAS  Google Scholar 

  47. V. V. SHVARTSMAN and A. L. KHOLKIN, Phys. Rev. B 69 (2004) 014102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Kleemann, W. (2006). The relaxor enigma — charge disorder and random fields in ferroelectrics. In: Frontiers of Ferroelectricity. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-38039-1_12

Download citation

Publish with us

Policies and ethics