Skip to main content

Self-assembled nanoscale ferroelectrics

  • Chapter
Frontiers of Ferroelectricity

Abstract

Multifunctional ferroelectric materials offer a wide range of useful properties, from switchable polarization that can be applied in memory devices to piezoelectric and pyroelectric properties used in actuators, transducers and thermal sensors. At the nanometer scale, however, material properties are expected to be different from those in bulk. Fundamental problems such as the super-paraelectric limit, the influence of the free surface, and of interfacial and bulk defects on ferroelectric switching, etc., arise when scaling down ferroelectrics to nanometer sizes. In order to study these size effects, fabrication methods of high quality nanoscale ferroelectric crystals have to be developed. The present paper briefly reviews self-patterning and self-assembly fabrication methods, including chemical routes, morphological instability of ultrathin films, microemulsion, and self-assembly lift-off, employed up to the date to fabricate ferroelectric structures with lateral sizes in the range of few tens of nanometers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. AUCIELLO, J. F. SCOTT and R. RAMESH, Physics Today 51 (1998) 22.

    CAS  Google Scholar 

  2. D. J. EAGLESHAM and M. CERULLO, Phys. Rev. Lett. 64 (1990) 1943.

    Article  CAS  Google Scholar 

  3. R. L. SELLIN, C. RIBBAT, M. GRUNDMANN, N. N. LEDENTSOV and D. BIMBERG, Appl. Phys. Lett. 78 (2001) 1207.

    Article  CAS  Google Scholar 

  4. Y. LIN, H. SKAFF, T. EMRICK, A. D. DINSMORE and T. P. RUSSELL, Science 299 (2003) 226.

    Article  CAS  Google Scholar 

  5. H. HERRIG and R. HEMPELMANN, Mater. Lett. 27 (1996) 287.

    Article  CAS  Google Scholar 

  6. M. ALEXE, J. F. SCOTT, C. CURRAN, N. D. ZAKHAROV, D. HESSE and A. PIGNOLET, Appl. Phys. Lett. 73 (1998) 1592.

    Article  CAS  Google Scholar 

  7. T. TAKAHASHI and H. IWAHARA, Mater. Res. Bull. 13 (1978) 1447.

    Article  CAS  Google Scholar 

  8. M. ALEXE, A. GRUVERMAN, C. HAMAGEA, N. D. ZAKHAROV, A. PIGNOLET, D. HESSE and J. F. SCOTT, Appl. Phys. Lett. 75 (1999) 1158.

    Article  CAS  Google Scholar 

  9. O. G. SCHMIDT and K. EBERL, Phys. Rev. B—Condensed Matt. 61 (2000) 13721.

    CAS  Google Scholar 

  10. O. G. SCHMIDT, U. DENKER, K. EBERL, O. KIENZLE, F. ERNST and R. J. HAUG, Appl. Phys. Lett. 77 (2000) 4341.

    Article  CAS  Google Scholar 

  11. H. OMI, D. J. BOTTOMLEY, Y. HOMMA and T. OGINO, Phys. Rev. B—Condensed Matt. 67 (2003) 115302.

    Google Scholar 

  12. K. S. SEOL, S. TOMITA, K. TAKEUCHI, T. MIYAGAWA, T. KATAGIRI and Y. OHKI, Appl. Phys. Lett. 81 (2002) 1893.

    Article  CAS  Google Scholar 

  13. A. VISINOIU, Private communication (2001).

    Google Scholar 

  14. E. VASCO, R. DITTMANN, S. KARTHAUSER and R. WASER, Appl. Phys. Lett. 82 (2003) 2497.

    Article  CAS  Google Scholar 

  15. S. KARTHAUSER, E. VASCO, R. DITTMANN and R. WASER, Nanotechnology 15 (2004) S122.

    Article  CAS  Google Scholar 

  16. M. SHIMIZU, M. SUGIYAMA, H. FUJISAWA, T. HAMANO, T. SHIOSAKI and K. MATSUSHIGE, J. Cryst. Gr. 145 (1994) 226.

    Article  CAS  Google Scholar 

  17. H. FUJISAWA, K. MORIMOTO, M. SHIMIZU, H. NIU, K. HONDA and S. OHTANI, Japan Soc. Appl. Phys. Japanese J. Appl. Phys. Part 1—Regular Papers Short Notes & Review Papers 39 (2000) 5446.

    CAS  Google Scholar 

  18. F. FUJISAWA, K. MORIMOTO, M. SHIMIZU, H. NIU, K. HONDA and S. OHTANI, Ferroelectric Thin Films IX. Symposium (Materials Research Society Symposium Proceedings Vol. 655). Mater. Res. Soc. (2001) CC10.

    Google Scholar 

  19. P. MURALT, S. BUHLMANN and S. VON ALLMEN, Mater. Res. Soc. Symposium Proceedings 784 (2004) 13.

    Google Scholar 

  20. S. BUHLMANN, P. MURALT and S. VON ALLMEN, Appl. Phys. Lett. 84 (2004) 2614.

    Article  CAS  Google Scholar 

  21. K. D. BUDD, S. K. DEY and D. A. PAYNE, Brit. Ceram. Proc. (1985) 107.

    Google Scholar 

  22. T. SCHNELLER and R. WASER, Ferroelectrics 267 (2002) 293.

    Article  CAS  Google Scholar 

  23. A. SEIFERT, A. VOJTA, J. S. SPECK and F. F. LANGE, J. Mater. Res. 11 (1996) 1470.

    Article  CAS  Google Scholar 

  24. K. T. MILLER, F. F. LANGE and D. B. MARSHALL, ibid. 5 (1990) 151.

    Article  CAS  Google Scholar 

  25. R. WASER, T. SCHNELLER, S. HOFFMANN-EIFERT and P. EHRHART, Integ. Ferroelect. 36 (2001) 3.

    Article  CAS  Google Scholar 

  26. A. ROELOFS, T. SCHNELLER, K. SZOT and R. WASER, IOP Publishing. Nanotechnology 14 (2003) 250.

    Article  CAS  Google Scholar 

  27. I. SZAFRANIAK, C. HARNAGEA, R. SCHOLZ, S. BHATTACHARYYA, D. HESSE and M. ALEXE, Appl. Phys. Lett. 83 (2003) 2211.

    Article  CAS  Google Scholar 

  28. M. DAWBER, I. SZAFRANIAK, M. ALEXE and J. F. SCOTT, J. Phys.—Condensed Matter 15 (2003) L667.

    Article  CAS  Google Scholar 

  29. V. A. SHCHUKIN, N. N. LEDENTSOV, P. S. KOPEV and D. BIMBERG, Phys. Rev. Lett. 75 (1995) 2968.

    Article  CAS  Google Scholar 

  30. R. S. WILLIAMS, G. MEDEIROS-RIBEIRO, T. I. KAMINS and D. A. A. OHLBERG, Ann. Rev. Phys. Chem. 51 (2000).

    Google Scholar 

  31. M. W. CHU, I. SZAFRANIAK, R. SCHOLZ, C. HARNAGEA, D. HESSE, M. ALEXE and U. GOSELE, Nat. Mater. 3 (2004) 87.

    Article  CAS  Google Scholar 

  32. F. F. LANGE, Science 273 (1996) 903.

    Article  CAS  Google Scholar 

  33. A. T. CHIEN, J. S. SPECK and F. F. LANGE, J. Mater. Res. 12 (1997) 1176.

    CAS  Google Scholar 

  34. A. T. CHIEN, J. S. SPECK, F. F. LANGE, A. C. DAYKIN and C. G. LEVI, ibid. 10 (1995) 1784.

    Article  CAS  Google Scholar 

  35. A. T. CHIEN, L. ZHAO, M. COLIC, J. S. SPECK and F. F. LANGE, ibid. 13 (1998) 649.

    CAS  Google Scholar 

  36. P. BENDALE, S. VENIGALLA, J. R. AMBROSE, E. D. VERINK, JR. and J. H. ADAIR, J. Amer. Ceram. Soc. 76 (1993) 2619.

    Article  CAS  Google Scholar 

  37. I. SZAFRANIAK and M. ALEXE, Ferroelectrics 291 (2003) 19.

    Google Scholar 

  38. D. F. EVANS and H. WENNERSTROM, in “The Colloid Domain. Where Physics, Chemistry and Technology Meet” (Wiley-VCH, New York, 1994).

    Google Scholar 

  39. N. A. KOTOV, F. C. MELDRUN and J. H. FENDLER, J. Phys. Chem. 98 (1994) 8827.

    Article  CAS  Google Scholar 

  40. C. LIU, B. ZOU, A. J. RONDINONE and J. Z. ZHANG, J. Amer. Ceram. Soc. 123 (2001) 4344.

    CAS  Google Scholar 

  41. S. O’BRIEN, L. BRUS and C. B. MURRAY, J. Amer. Chem. Soc. 123 (2001) 12085.

    Article  CAS  Google Scholar 

  42. K. LANDFESTER, Adv. Mater. 13 (2001) 756.

    Article  Google Scholar 

  43. F. JIYE, K. L. STOKES, J. WIEMANN and Z. WEILIE, Mater. Lett. 42 (2000) 113.

    Article  Google Scholar 

  44. S. BANDOW, K. KIMURA, K. KON-NO and A. KITAHARA, Japanese J. Appl. Phys. Part 1—Regular Papers Short Notes & Review Papers 26 (1987) 713.

    CAS  Google Scholar 

  45. P. AYYUB, A. N. MAITRA and D. O. SHAH, Physica C 168 (1990) 571.

    Article  CAS  Google Scholar 

  46. K. OSSEO-ASSARE, in “Handbook of Microemulsion Science and Technology”, edited by P. Kumar and K. L. Mittal (Marcel Dekker, Inc., New York, Basel, 1999) p. 549.

    Google Scholar 

  47. C. BECK, W. HARTL and R. HEMPELMANN, J. Mater. Res. 13 (1998).

    Google Scholar 

  48. J. WANG, J. FANG, S.-C. NG, L.-M. GAN, C. H. CHEW, X. WANG and Z. SHEN, J. Amer. Ceram. Soc. 82 (1999) 873.

    Article  CAS  Google Scholar 

  49. S. BHATTACHARYYA, S. CHATTOPADHYAY and M. ALEXE, Nanomaterials for Structural Applications. Symposium (Mater. Res. Soc. Symposium Proceedings Vol. 740). Mater. Res. Soc. (2003) 333.

    Google Scholar 

  50. A. KORIOSEK, W. KANDULSKI, P. CHUDZINSKI, K. KEMPA and M. GIERSIG, Nano Lett. 4 (2004) 1359.

    Article  CAS  Google Scholar 

  51. H. W. DECKMAN and J. H. DUNSMUIR, Appl. Phys. Lett. 41 (1982) 377.

    Article  CAS  Google Scholar 

  52. J. C. HULTEEN and R. P. VAN DUYNE, J. Vac. Sci. Technol. A 13 (1995).

    Google Scholar 

  53. W. MA and D. HESSE, Appl. Phys. Lett. 84 (2004) 2871.

    Article  CAS  Google Scholar 

  54. W. MA, C. HARNAGEA, D. HESSE and U. GOSELE, ibid. 83 (2003) 3770.

    Article  CAS  Google Scholar 

  55. W. MA and D. HESSE, ibid. 85 (2004) 3214.

    Article  CAS  Google Scholar 

  56. J. RYBCZYNSKI, U. EBELS and M. GIERSIG, Coll. Surf. A: Physicochem. Eng. Asp. 219 (2003) 1.

    Article  CAS  Google Scholar 

  57. M. ALEXE, C. HARNAGEA, D. HESSE and U. GOSELE, Appl. Phys. Lett. 79 (2001) 242.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Alexe, M., Hesse, D. (2006). Self-assembled nanoscale ferroelectrics. In: Frontiers of Ferroelectricity. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-38039-1_1

Download citation

Publish with us

Policies and ethics