Skip to main content

Cloning Cattle

The Methods in the Madness

  • Chapter
Somatic Cell Nuclear Transfer

Part of the book series: Advances in Experimental Medicine and Biology ((volume 591))

Abstract

Somatic cell nuclear transfer (SCNT) is much more widely and efficiently practiced in cattle than in any other species, making this arguably the most important mammal cloned to date. While the initial objective behind cattle cloning was commercially driven—in particular to multiply genetically superior animals with desired phenotypic traits and to produce genetically modified animals—researchers have now started to use bovine SCNT as a tool to address diverse questions in developmental and cell biology. In this paper, we review current cattle cloning methodologies and their potential technical or biological pitfalls at any step of the procedure. In doing so, we focus on one methodological parameter, namely donor cell selection. We emphasize the impact of epigenetic and genetic differences between embryonic, germ, and somatic donor cell types on cloning efficiency. Lastly, we discuss adult phenotypes and fitness of cloned cattle and their offspring and illustrate some of the more imminent commercial cattle cloning applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wakayama T, Perry AC, Zuccotti M et al. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 1998; 394(6691):369–374.

    Article  PubMed  CAS  Google Scholar 

  2. Memili E, First NL. Zygotic and embryonic gene expression in cow: A review of timing and mechanisms of early gene expression as compared with other species. Zygote 2000; 8(1):87–96.

    Article  PubMed  CAS  Google Scholar 

  3. McGrath J, Solter D. Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 1983; 220(4603):1300–1302.

    Article  PubMed  CAS  Google Scholar 

  4. Willadsen SM. Nuclear transplantation in sheep embryos. Nature 1986; 320(6057):63–65.

    Article  PubMed  CAS  Google Scholar 

  5. Prather RS, Barnes FL, Sims MM et al. Nuclear transplantation in the bovine embryo: Assessment of donor nuclei and recipient oocyte. Biol Reprod 1987; 37(4):859–866.

    Article  PubMed  CAS  Google Scholar 

  6. Oback B, Wiersema AT, Gaynor P et al. Cloned cattle derived from a novel zona-free embryo reconstruction system. Cloning Stem Cells 2003; 5(1):3–12.

    Article  PubMed  CAS  Google Scholar 

  7. Peura TT, Lewis IM, Trounson AO. The effect of recipient oocyte volume on nuclear transfer in cattle. Mol Reprod Dev 1998; 50(2):185–191.

    Article  PubMed  CAS  Google Scholar 

  8. Vajta G, Lewis IM, Hyttel P et al. Somatic cell cloning without micromanipulators. Cloning 2001; 3(2):89–95.

    Article  PubMed  CAS  Google Scholar 

  9. Western PS, Surani MA. Nuclear reprogramming—alchemy or analysis? Nat Biotechnol 2002; 20(5):445–446.

    Article  PubMed  CAS  Google Scholar 

  10. Kramer JA, McCarrey JR, Djakiew D et al. Differentiation: The selective potentiation of chromatin domains. Development 1998; 125(23):4749–4755.

    PubMed  CAS  Google Scholar 

  11. Muller C, Leutz A. Chromatin remodeling in development and differentiation. Curr Opin Genet Dev 2001; 11(2):167–174.

    Article  PubMed  CAS  Google Scholar 

  12. Oback B, Wells D. Donor cells for nuclear cloning: Many are called, but few are chosen. Cloning Stem Cells 2002; 4(2):147–168.

    Article  PubMed  CAS  Google Scholar 

  13. Jaenisch R, Eggan K, Humpherys D et al. Nuclear cloning, stem cells, and genomic reprogramming. Cloning Stem Cells 2002; 4(4):389–396.

    Article  CAS  Google Scholar 

  14. Morgan HD, Santos F, Green K et al. Epigenetic reprogramming in mammals. Hum Mol Genet 2005; 14 (Spec No 1):R47–58.

    Article  PubMed  CAS  Google Scholar 

  15. Hiiragi T, Solter D. Reprogramming is essential in nuclear transfer. Mol Reprod Dev 2005; 70(4):417–421.

    Article  PubMed  CAS  Google Scholar 

  16. Cheong HT, Takahashi Y, Kanagawa H. Birth of mice after transplantation of early cell-cycle-stage embryonic nuclei into enucleated oocytes. Biol Reprod 1993; 48(5):958–963.

    Article  PubMed  CAS  Google Scholar 

  17. Otaegui PJ, O’Neill GT, Campbell KH et al. Transfer of nuclei from 8-cell stage mouse embryos following use of nocodazole to control the cell cycle. Mol Reprod Dev 1994; 39(2):147–152.

    Article  PubMed  CAS  Google Scholar 

  18. Johnson WH, Loskutoff NM, Plante Y et al. Production of four identical calves by the separation of blastomeres from an in vitro derived four-cell embryo. Vet Rec 1995; 137(1):15–16.

    Article  PubMed  CAS  Google Scholar 

  19. Modlinski JA, Ozil JP, Modlinska MK et al. Development of single mouse blastomeres enlarged to zygote size in conditions of nucleo-cytoplasmic synchrony. Zygote 2002; 10(4):283–290.

    Article  PubMed  Google Scholar 

  20. Willadsen SM, Polge C. Attempts to produce monozygotic quadruplets in cattle by blastomere separation. Vet Rec 1981; 108(10):211–213.

    Article  PubMed  CAS  Google Scholar 

  21. Kwon OY, Kono T. Production of identical sextuplet mice by transferring metaphase nuclei from four-cell embryos. Proc Natl Acad Sci USA 1996; 93(23):13010–13013.

    Article  PubMed  CAS  Google Scholar 

  22. Ono Y, Shimozawa N, Ito M et al. Cloned mice from fetal fibroblast cells arrested at metaphase by a serial nuclear transfer. Biol Reprod 2001; 64(1):44–50.

    Article  PubMed  CAS  Google Scholar 

  23. Heyman Y, Chavatte-Palmer P, LeBourhis D et al. Frequency and occurrence of late-gestation losses from cattle cloned embryos. Biol Reprod 2002; 66(1):6–13.

    Article  PubMed  CAS  Google Scholar 

  24. Keefer CL, Stice SL, Matthews DL. Bovine inner cell mass cells as donor nuclei in the production of nuclear transfer embryos and calves. Biol Reprod 1994; 50(4):935–939.

    Article  PubMed  CAS  Google Scholar 

  25. Collas P, Barnes FL. Nuclear transplantation by microinjection of inner cell mass and granulosa cell nuclei. Mol Reprod Dev 1994; 38(3):264–267.

    Article  PubMed  CAS  Google Scholar 

  26. Sims M, First NL. Production of calves by transfer of nuclei from cultured inner cell mass cells. Proc Natl Acad Sci USA 1994; 91(13):6143–6147.

    Article  PubMed  CAS  Google Scholar 

  27. Tsunoda Y, Kato Y. Not only inner cell mass cell nuclei but also trophectoderm nuclei of mouse blastocysts have a developmental totipotency. J Reprod Fertil 1998; 113(2):181–184.

    PubMed  CAS  Google Scholar 

  28. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292(5819):154–156.

    Article  PubMed  CAS  Google Scholar 

  29. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981; 78(12):7634–7638.

    Article  PubMed  CAS  Google Scholar 

  30. Tesar PJ. Derivation of germ-line-competent embryonic stem cell lines from preblastocyst mouse embryos. Proc Natl Acad Sci USA 2005; 102(23):8239–8244.

    Article  PubMed  CAS  Google Scholar 

  31. Cibelli JB, Stice SL, Golueke PJ et al. Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nat Biotechnol 1998; 16(7):642–646.

    Article  PubMed  CAS  Google Scholar 

  32. Mitalipova M, Beyhan Z, First NL. Pluripotency of bovine embryonic cell line derived from precompacting embryos. Cloning 2001; 3(2):59–67.

    Article  PubMed  CAS  Google Scholar 

  33. Wang L, Duan E, Sung LY et al. Generation and characterization of pluripotent stem cells from cloned bovine embryos. Biol Reprod 2005; 73(1):149–155.

    Article  PubMed  CAS  Google Scholar 

  34. Saito S, Sawai K, Ugai H et al. Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells. Biochem Biophys Res Commun 2003; 309(1):104–113.

    Article  PubMed  CAS  Google Scholar 

  35. Wells DN, Oback B, Laible G. Cloning livestock: A return to embryonic cells. Trends Biotechnol 2003; 21(10):428–432.

    Article  PubMed  CAS  Google Scholar 

  36. Eggan K, Akutsu H, Loring J et al. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci USA 2001; 98(11):6209–6214.

    Article  PubMed  CAS  Google Scholar 

  37. Rideout IIIrd WM, Wakayama T, Wutz A et al. Generation of mice from wild-type and targeted ES cells by nuclear cloning. Nat Genet 2000; 24(2):109–110.

    Article  PubMed  CAS  Google Scholar 

  38. Amano T, Tani T, Kato Y et al. Mouse cloned from embryonic stem (ES) cells synchronized in metaphase with nocodazole. J Exp Zool 2001; 289(2):139–145.

    Article  PubMed  CAS  Google Scholar 

  39. Ono Y, Shimozawa N, Muguruma K et al. Production of cloned mice from embryonic stem cells arrested at metaphase. Reproduction 2001; 122(5):731–736.

    Article  PubMed  CAS  Google Scholar 

  40. Zhou Q, Jouneau A, Brochard V et al. Developmental potential of mouse embryos reconstructed from metaphase embryonic stem cell nuclei. Biol Reprod 2001; 65(2):412–419.

    PubMed  CAS  Google Scholar 

  41. Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature 1993; 366(6453):362–365.

    Article  PubMed  CAS  Google Scholar 

  42. Szabo PE, Mann JR. Biallelic expression of imprinted genes in the mouse germ line: Implications for erasure, establishment, and mechanisms of genomic imprinting. Genes Dev 1995; 9(15):1857–1868.

    Article  PubMed  CAS  Google Scholar 

  43. Jaenisch R. DNA methylation and imprinting: Why bother? Trends Genet 1997; 3(8):323–329.

    Article  Google Scholar 

  44. Kato Y, Rideout IIIrd WM, Hilton K et al. Developmental potential of mouse primordial germ cells. Development 1999; 126(9):1823–1832.

    PubMed  CAS  Google Scholar 

  45. Lee J, Inoue K, Ono R et al. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development 2002; 129(8):1807–1817.

    PubMed  CAS  Google Scholar 

  46. Yamazaki Y, Mann MR, Lee SS et al. Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc Natl Acad Sci USA 2003; 100(21):12207–12212.

    Article  PubMed  CAS  Google Scholar 

  47. Zakhartchenko V, Durcova-Hills G, Schernthaner W et al. Potential of fetal germ cells for nuclear transfer in cattle. Mol Reprod Dev 1999; 52(4):421–426.

    Article  PubMed  CAS  Google Scholar 

  48. Miki H, Inoue K, Kohda T et al. Birth of mice produced by germ cell nuclear transfer. Genesis 2005; 41(2):81–86.

    Article  PubMed  CAS  Google Scholar 

  49. Yamazaki Y, Low EW, Marikawa Y et al. Adult mice cloned from migrating primordial germ cells. Proc Natl Acad Sci USA 2005; 102(32):11361–11366.

    Article  PubMed  CAS  Google Scholar 

  50. Matsui Y, Zsebo K, Hogan BL. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 1992; 70(5):841–847.

    Article  PubMed  CAS  Google Scholar 

  51. Stewart CL, Gadi I, Bhatt H. Stem cells from primordial germ cells can reenter the germ line. Dev Biol 1994; 161(2):626–628.

    Article  PubMed  CAS  Google Scholar 

  52. Labosky PA, Barlow DP, Hogan BL. Mouse embryonic germ (EG) cell lines: Transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development 1994; 120(11):3197–3204.

    PubMed  CAS  Google Scholar 

  53. Ward WS, Coffey DS. DNA packaging and organization in mammalian spermatozoa: Comparison with somatic cells. Biol Reprod 1991; 44(4):569–574.

    Article  PubMed  CAS  Google Scholar 

  54. Saunders CM, Larman MG, Parrington J et al. PLC zeta: A sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development 2002; 129(15):3533–3544.

    PubMed  CAS  Google Scholar 

  55. Wei H, Fukui Y. Births of calves derived from embryos produced by intracytoplasmic sperm injection without exogenous oocyte activation. Zygote 2002; 10(2):149–153.

    Article  PubMed  Google Scholar 

  56. Kishigami S, Wakayama S, Nguyen VT et al. Similar time restriction for intracytoplasmic sperm injection and round spermatid injection into activated oocytes for efficient offspring production. Biol Reprod 2004; 70(6):1863–1869.

    Article  PubMed  CAS  Google Scholar 

  57. Yanagimachi R. Intracytoplasmic injection of spermatozoa and spermatogenic cells: Its biology and applications in humans and animals. Reprod Biomed Online 2005; 10(2):247–288.

    PubMed  Google Scholar 

  58. Kimura Y, Yanagimachi R. Mouse oocytes injected with testicular spermatozoa or round spermatids can develop into normal offspring. Development 1995; 121(8):2397–2405.

    PubMed  CAS  Google Scholar 

  59. Briggs R, King TJ. Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci USA 1952; 38:455–463.

    Article  PubMed  CAS  Google Scholar 

  60. Campbell KH, McWhir J, Ritchie WA et al. Sheep cloned by nuclear transfer from a cultured cell line. Nature 1996; 380(6569):64–66.

    Article  PubMed  CAS  Google Scholar 

  61. Wilmut I, Schnieke AE, McWhir J et al. Viable offspring derived from fetal and adult mammalian cells. Nature 1997; 385(6619):810–813.

    Article  PubMed  CAS  Google Scholar 

  62. Raff M. Adult stem cell plasticity: Fact or artifact? Annu Rev Cell Dev Biol 2003; 19:1–22.

    Article  PubMed  CAS  Google Scholar 

  63. Evsikov AV, Solter D. Comment on “’sternness’: Transcriptional profiling of embryonic and adult stem cells” and “a stem cell molecular signature”. Science 2003; 302(5644):393, (author reply 393).

    Article  PubMed  CAS  Google Scholar 

  64. Fortunel NO, Otu HH, Ng HH et al. Comment on “’sternness’: Transcriptional profiling of embryonic and adult stem cells” and “a stem cell molecular signature”. Science 2003; 302(5644):393, (author reply 393).

    Article  PubMed  CAS  Google Scholar 

  65. Sharpe RM, McKinnell C, Kivlin C et al. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 2003; 125(6):769–784.

    Article  PubMed  CAS  Google Scholar 

  66. Inoue K, Ogonuki N, Mochida K et al. Effects of donor cell type and genotype on the efficiency of mouse somatic cell cloning. Biol Reprod 2003; 69(4):1394–1400.

    Article  PubMed  CAS  Google Scholar 

  67. Kues WA, Petersen B, Mysegades W et al. Isolation of murine and porcine fetal stem cells from somatic tissue. Biol Reprod 2005; 72(4):1020–1028.

    Article  PubMed  CAS  Google Scholar 

  68. Chang HY, Chi JT, Dudoit S et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA 2002; 99(20):12877–12882.

    Article  PubMed  CAS  Google Scholar 

  69. Oback B, Wells DN. Cloning cattle. Cloning Stem Cells 2003; 5(4):243–256.

    Article  PubMed  CAS  Google Scholar 

  70. Powell AM, Talbot NC, Wells KD et al. Cell donor influences success of producing cattle by somatic cell nuclear transfer. Biol Reprod 2004; 71(1):210–216.

    Article  PubMed  CAS  Google Scholar 

  71. Liu L. Cloning efficiency and differentiation. Nat Biotechnol 2001; 19(5):406.

    Article  PubMed  CAS  Google Scholar 

  72. Wells DN, Laible G, Tucker FC et al. Coordination between donor cell type and cell cycle stage improves nuclear cloning efficiency in cattle. Theriogenology 2003; 59(1):45–59.

    Article  PubMed  CAS  Google Scholar 

  73. Hochedlinger K, Jaenisch R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 2002; 415(6875):1035–1038.

    Article  PubMed  CAS  Google Scholar 

  74. Wang Z, Jaenisch R. At most three ES cells contribute to the somatic lineages of chimeric mice and of mice produced by ES-tetraploid complementation. Dev Biol 2004; 275(1):192–201.

    Article  PubMed  CAS  Google Scholar 

  75. Inoue K, Wakao H, Ogonuki N et al. Generation of cloned mice by direct nuclear transfer from natural killer T cells. Curr Biol 2005; 15(12):1114–1118.

    Article  PubMed  CAS  Google Scholar 

  76. Wakayama T, Yanagimachi R. Mouse cloning with nucleus donor cells of different age and type. Mol Reprod Dev 2001; 58(4):376–383.

    Article  PubMed  CAS  Google Scholar 

  77. Oback B, Wells D. Practical aspects of donor cell selection for nuclear cloning. Cloning Stem Cells 2002; 4(2):169–175.

    Article  PubMed  CAS  Google Scholar 

  78. Taniguchi M, Nakayama T. Recognition and function of Valpha14 NKT cells. Semin Immunol 2000; 12(6):543–550.

    Article  PubMed  CAS  Google Scholar 

  79. Taniguchi M, Harada M, Kojo S et al. The regulatory role of Valphal4 NKT cells in innate and acquired immune response. Annu Rev Immunol 2003; 21:483–513.

    Article  PubMed  CAS  Google Scholar 

  80. Osada T, Kusakabe H, Akutsu H et al. Adult murine neurons: Their chromatin and chromosome changes and failure to support embryonic development as revealed by nuclear transfer. Cytogenet Genome Res 2002; 97(1–2):7–12.

    Article  PubMed  CAS  Google Scholar 

  81. Yamazaki Y, Makino H, Hamaguchi-Hamada K et al. Assessment of the developmental totipotency of neural cells in the cerebral cortex of mouse embryo by nuclear transfer. Proc Natl Acad Sci USA 2001; 98(24):14022–14026.

    Article  PubMed  CAS  Google Scholar 

  82. Makino H, Yamazaki Y, Hirabayashi T et al. Mouse embryos and chimera cloned from neural cells in the postnatal cerebral cortex. Cloning Stem Cells 2005; 7(1):45–61.

    Article  PubMed  CAS  Google Scholar 

  83. Eggan K, Baldwin K, Tackett M et al. Mice cloned from olfactory sensory neurons. Nature 2004; 428(6978):44–49.

    Article  PubMed  CAS  Google Scholar 

  84. Kasinathan P, Knott JG, Moreira PN et al. Effect of fibroblast donor cell age and cell cycle on development of bovine nuclear transfer embryos in vitro. Biol Reprod 2001; 64(5):1487–1493.

    Article  PubMed  CAS  Google Scholar 

  85. Bourc’his D, Le Bourhis D, Patin D et al. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr Biol 2001; 11:1542–1546.

    Article  CAS  Google Scholar 

  86. Dean W, Santos F, Stojkovic M et al. Conservation of methylation reprogramming in mammalian development: Aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA 2001; 98(24):13734–13738.

    Article  PubMed  CAS  Google Scholar 

  87. Kang YK, Koo DB, Park JS et al. Aberrant methylation of donor genome in cloned bovine embryos. Nat Genet 2001; 28(2):173–177.

    Article  PubMed  CAS  Google Scholar 

  88. Kang YK, Park JS, Koo DB et al. Limited demethylation leaves mosaic-type methylation states in cloned bovine preimplantation embryos. EMBO J 2002; 21(5):1092–1100.

    Article  PubMed  CAS  Google Scholar 

  89. Santos F, Zakhartchenko V, Stojkovic M et al. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol 2003; 13(13):1116–1121.

    Article  PubMed  CAS  Google Scholar 

  90. Boiani M, Eckardt S, Scholer HR et al. Oct4 distribution and level in mouse clones: Consequences for pluripotency. Genes Dev 2002; 16(10):1209–1219.

    Article  PubMed  CAS  Google Scholar 

  91. Bortvin A, Eggan K, Skaletsky H et al. Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development 2003; 130(8):1673–1680.

    Article  PubMed  CAS  Google Scholar 

  92. Humpherys D, Eggan K, Akutsu H et al. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc Natl Acad Sci USA 2002; 99(20):12889–12894.

    Article  PubMed  CAS  Google Scholar 

  93. Pfister-Genskow M, Myers C, Childs LA et al. Identification of differentially expressed genes in individual bovine preimplantation embryos produced by nuclear transfer: Improper reprogramming of genes required for development. Biol Reprod 2005; 72(3):546–555.

    Article  PubMed  CAS  Google Scholar 

  94. Wrenzycki C, Wells D, Herrmann D et al. Nuclear transfer protocol affects messenger RNA expression patterns in cloned bovine blastocysts. Biol Reprod 2001; 65(1):309–317.

    Article  PubMed  CAS  Google Scholar 

  95. Shimozawa N, Ono Y, Kimoto S et al. Abnormalities in cloned mice are not transmitted to the progeny. Genesis 2002; 34(3):203–207.

    Article  PubMed  Google Scholar 

  96. Kingsbury MA, Friedman B, McConnell MJ et al. Aneuploid neurons are functionally active and integrated into brain circuitry. Proc Natl Acad Sci USA 2005; 102(17):6143–6147.

    Article  PubMed  CAS  Google Scholar 

  97. Hochedlinger K, Blelloch R, Brennan C et al. Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev 2004; 18(15):1875–1885.

    Article  PubMed  CAS  Google Scholar 

  98. Cervantes RB, Stringer JR, Shao C et al. Embryonic stem cells and somatic cells differ in mutation frequency and type. Proc Natl Acad Sci USA 2002; 99(6):3586–3590.

    Article  PubMed  CAS  Google Scholar 

  99. Eggan K, Rode A, Jentsch I et al. Male and female mice derived from the same embryonic stem cell clone by tetraploid embryo complementation. Nat Biotechnol 2002; 20(5):455–459.

    Article  PubMed  CAS  Google Scholar 

  100. Blelloch RH, Hochedlinger K, Yamada Y et al. Nuclear cloning of embryonal carcinoma cells. Proc Natl Acad Sci USA 2004; 101(39):13985–13990.

    PubMed  CAS  Google Scholar 

  101. Bureau WS, Bordignon V, Leveillee C et al. Assessment of chromosomal abnormalities in bovine nuclear transfer embryos and in their donor cells. Cloning Stem Cells 2003; 5(2):123–132.

    Article  PubMed  CAS  Google Scholar 

  102. Booth PJ, Viuff D, Tan S et al. Numerical chromosome errors in day 7 somatic nuclear transfer bovine blastocysts. Biol Reprod 2003; 68(3):922–928.

    Article  PubMed  CAS  Google Scholar 

  103. Kubota C, Yamakuchi H, Todoroki J et al. Six cloned calves produced from adult fibroblast cells after long-term culture. Proc Natl Acad Sci USA 2000; 97(3):990–995.

    Article  PubMed  CAS  Google Scholar 

  104. Lanza RP, Cibelli JB, Blackwell C et al. Extension of cell life-span and telomere length in animals cloned from senescent somatic cells. Science 2000; 288(5466):665–669.

    Article  PubMed  CAS  Google Scholar 

  105. Pesole G, Gissi C, De Chirico A et al. Nucleotide substitution rate of mammalian mitochondrial genomes. J Mol Evol 1999; 48(4):427–434.

    Article  PubMed  CAS  Google Scholar 

  106. Inoue K, Ogonuki N, Yamamoto Y et al. Tissue-specific distribution of donor mitochondrial DNA in cloned mice produced by somatic cell nuclear transfer. Genesis 2004; 39(2):79–83.

    Article  PubMed  CAS  Google Scholar 

  107. Bogenhagen D, Clayton DA. The number of mitochondrial deoxyribonudeic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonudeic acid. J Biol Chem 1974; 249(24):7991–7995.

    PubMed  CAS  Google Scholar 

  108. Shmookler Reis RJ, Goldstein S. Mitochondrial DNA in mortal and immortal human cells. Genome number, integrity, and methylation. J Biol Chem 1983; 258(15):9078–9085.

    PubMed  CAS  Google Scholar 

  109. Betts D, Bordignon V, Hill J et al. Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle. Proc Natl Acad Sci USA 2001; 98(3):1077–1082.

    Article  PubMed  CAS  Google Scholar 

  110. Miyashita N, Shiga K, Yonai M et al. Remarkable differences in telomere lengths among cloned cattle derived from different cell types. Biol Reprod 2002; 66(6):1649–1655.

    Article  PubMed  CAS  Google Scholar 

  111. Gao S, McGarry M, Ferrier T et al. Effect of cell confluence on production of cloned mice using an inbred embryonic stem cell line. Biol Reprod 2003; 68(2):595–603.

    Article  PubMed  CAS  Google Scholar 

  112. Wakayama T, Rodriguez I, Perry AC et al. Mice cloned from embryonic stem cells. Proc Natl Acad Sci USA 1999; 96(26):14984–14989.

    Article  PubMed  CAS  Google Scholar 

  113. Visscher PM, Smith D, Hall SJ et al. A viable herd of genetically uniform cattle. Nature 2001; 409(6818):303.

    Article  PubMed  CAS  Google Scholar 

  114. Eggan K, Akutsu H, Hochedlinger K et al. X-Chromosome inactivation in cloned mouse embryos. Science 2000; 290(5496):1578–1581.

    Article  PubMed  CAS  Google Scholar 

  115. Nolen LD, Gao S, Han Z et al. X chromosome reactivation and regulation in cloned embryos. Dev Biol 2005; 279(2):525–540.

    Article  PubMed  CAS  Google Scholar 

  116. Xue F, Tian XC, Du F et al. Aberrant patterns of X chromosome inactivation in bovine clones. Nat Genet 2002; 31(2):216–220.

    Article  PubMed  CAS  Google Scholar 

  117. Wakayama T, Tabar V, Rodriguez I et al. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 2001; 292(5517):740–743.

    Article  PubMed  CAS  Google Scholar 

  118. Gao S, Czirr E, Chung YG et al. Genetic variation in oocyte phenotype revealed through parthenogenesis and cloning: Correlation with differences in pronudear epigenetic modification. Biol Reprod 2004; 70(4):1162–1170.

    Article  PubMed  CAS  Google Scholar 

  119. Tecirlioglu RT, Cooney MA, Lewis IM et al. Comparison of two approaches to nuclear transfer in the bovine: Hand-made cloning with modifications and the conventional nuclear transfer technique. Reprod Fertil Dev 2005; 17(5):573–585.

    Article  PubMed  CAS  Google Scholar 

  120. Li GP, Bunch TD, White KL et al. Development, chromosomal composition, and cell allocation of bovine cloned blastocyst derived from chemically assisted enucleation and cultured in conditioned media. Mol Reprod Dev 2004; 68(2):189–197.

    Article  PubMed  CAS  Google Scholar 

  121. Fulka Jr J, Loi P, Fulka H et al. Nucleus transfer in mammals: Noninvasive approaches for the preparation of cytoplasts. Trends Biotechnol 2004; 22(6):279–283.

    Article  PubMed  CAS  Google Scholar 

  122. Li GP, White KL, Bunch TD. Review of enucleation methods and procedures used in animal cloning: State of the art. Cloning Stem Cells 2004; 6(1):5–13.

    Article  PubMed  CAS  Google Scholar 

  123. Kim TM, Hwang WS, Shin JH et al. Development of a nonmechanical enucleation method using X-ray irradiation in somatic cell nuclear transfer. Fertil Steril 2004; 82(4):963–965.

    Article  PubMed  Google Scholar 

  124. Galli C, Lagutina I, Vassiliev I et al. Comparison of microinjection (piezo-electric) and cell fusion for nuclear transfer success with different cell types in cattle. Cloning Stem Cells 2002; 4(3):189–196.

    Article  PubMed  CAS  Google Scholar 

  125. Brind S, Swann K, Carroll J. Inositol 1,4,5-trisphosphate receptors are downregulated in mouse oocytes in response to sperm or adenophostin A but not to increases in intracellular Ca(2+) or egg activation. Dev Biol 2000; 223(2):251–265.

    Article  PubMed  CAS  Google Scholar 

  126. Jellerette T, He CL, Wu H et al. Downregulation of the inositol 1,4,5-trisphosphate receptor in mouse eggs following fertilization or parthenogenetic activation. Dev Biol 2000; 223(2):238–250.

    Article  PubMed  CAS  Google Scholar 

  127. Kishikawa H, Wakayama T, Yanagimachi R. Comparison of oocyte-activating agents for mouse cloning. Cloning 1999; 1(3):153–159.

    Article  PubMed  CAS  Google Scholar 

  128. Gao S, Chung YG, Williams JW et al. Somatic cell-like features of cloned mouse embryos prepared with cultured myoblast nuclei. Biol Reprod 2003; 69(1):48–56.

    Article  PubMed  CAS  Google Scholar 

  129. Thompson JG, McNaughton C, Gasparrini B et al. Effect of inhibitors and uncouplers of oxidative phosphorylation during compaction and blastulation of bovine embryos cultured in vitro. J Reprod Fertil 2000; 118(1):47–55.

    Article  PubMed  CAS  Google Scholar 

  130. Hill JR, Burghardt RC, Jones K et al. Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses. Biol Reprod 2000; 63(6):1787–1794.

    Article  PubMed  CAS  Google Scholar 

  131. Lee RS, Peterson AJ, Donnison MJ et al. Cloned cattle fetuses with the same nuclear genetics are more variable than contemporary half-siblings resulting from artificial insemination and exhibit fetal and placental growth deregulation even in the first trimester. Biol Reprod 2004; 70(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  132. Wells DN, Forsyth JT, McMillan V et al. The health of somatic cell cloned cattle and their offspring. Cloning Stem Cells 2004; 6(2):101–110.

    Article  PubMed  CAS  Google Scholar 

  133. Everitt GC, Jury KE, Dalton DC et al. Beef production from the dairy herd. I Calving records from Friesian cows mated to Friesian and beef breed bulls. New Zealand J Agricult Res 1978; 21:197–208.

    Google Scholar 

  134. Morrow C, Berg M, McDonald R et al. Composition of allantoic fluid in cattle pregnant with AI-, IVP-or nuclear transfer-generated embryos. Reprod Fertil Dev 2005; 17:177.

    Article  Google Scholar 

  135. Wells DN, Misica PM, Tervit HR. Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol Reprod 1999; 60(4):996–1005.

    Article  PubMed  CAS  Google Scholar 

  136. Wells DN. Cloning in livestock agriculture. Reproduction 2003; (Supplement 61):131–150.

    PubMed  CAS  Google Scholar 

  137. Hill JR, Roussel AJ, Cibelli JB et al. Clinical and pathologic features of cloned transgenic calves and fetuses (13 case studies). Theriogenology 1999; 51(8):1451–1465.

    Article  PubMed  CAS  Google Scholar 

  138. Renard JP, Zhou Q, LeBourhis D et al. Nuclear transfer technologies: Between successes and doubts. Theriogenology 2002; 57(1):203–222.

    Article  PubMed  CAS  Google Scholar 

  139. Heyman Y, Zhou Q, Lebourhis D et al. Novel approaches and hurdles to somatic cloning in cattle. Cloning Stem Cells 2002; 4(1):47–55.

    Article  PubMed  CAS  Google Scholar 

  140. Lanza RP, Cibelli JB, Faber D et al. Cloned cattle can be healthy and normal. Science 2001; 294(5548):1893–1894.

    Article  PubMed  CAS  Google Scholar 

  141. Pace MM, Augenstein ML, Betthauser JM et al. Ontogeny of cloned cattle to lactation. Biol Reprod 2002; 67(1):334–339.

    Article  PubMed  CAS  Google Scholar 

  142. Archer GS, Friend TH, Piedrahita J et al. Behavioral variation among cloned pigs. Applied Animal Behaviour Science 2003; 82(2):151–161.

    Article  Google Scholar 

  143. Tamashiro KL, Wakayama T, Blanchard RJ et al. Postnatal growth and behavioral development of mice cloned from adult cumulus cells. Biol Reprod 2000; 63(1):328–334.

    Article  PubMed  CAS  Google Scholar 

  144. Wilson JM, Williams JD, Bondioli KR et al. Comparison of birth weight and growth characteristics of bovine calves produced by nuclear transfer (cloning), embryo transfer and natural mating. Anim Reprod Sci 1995; 38:73–83.

    Article  Google Scholar 

  145. Walsh MK, Lucey JA, Govindasamy-Lucey S et al. Comparison of milk produced by cows cloned by nuclear transfer with milk from noncloned cows. Cloning and Stem Cells 2003; 5(3):213–219.

    Article  PubMed  CAS  Google Scholar 

  146. Ogura A, Inoue K, Ogonuki N et al. Phenotypic effects of somatic cell cloning in the mouse. Cloning Stem Cells 2002; 4(4):397–405.

    Article  PubMed  CAS  Google Scholar 

  147. Tamashiro KL, Wakayama T, Akutsu H et al. Cloned mice have an obese phenotype not transmitted to their offspring. Nat Med 2002; 8(3):262–267.

    Article  PubMed  CAS  Google Scholar 

  148. Renard JP, Chastant S, Chesne P et al. Lymphoid hypoplasia and somatic cloning. Lancet 1999; 353(9163):1489–1491.

    Article  PubMed  CAS  Google Scholar 

  149. Ogonuki N, Inoue K, Yamamoto Y et al. Early death of mice cloned from somatic cells. Nat Genet 2002; 30(3):253–254.

    Article  PubMed  CAS  Google Scholar 

  150. Carroll JA, Carter DB, Korte S et al. The acute-phase response of cloned pigs following an immune challenge. American Society Of Animal Science, Southern Section Meeting, 2004, (abstract).

    Google Scholar 

  151. Ohta H, Wakayama T. Generation of normal progeny by intracytoplasmic sperm injection following grafting of testicular tissue from cloned mice that died postnatally. Biol Reprod 2005; 73(3):390–395.

    Article  PubMed  CAS  Google Scholar 

  152. Lane N, Dean W, Erhardt S et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 2003; 35(2):88–93.

    Article  PubMed  CAS  Google Scholar 

  153. Rakyan VK, Chong S, Champ ME et al. Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci USA 2003; 100(5):2538–2543.

    Article  PubMed  CAS  Google Scholar 

  154. Roemer I, Reik W, Dean W et al. Epigenetic inheritance in the mouse. Curr Biol 1997; 7(4):277–280.

    Article  PubMed  CAS  Google Scholar 

  155. Wells DN, Misica PM, Tervit HR et al. Adult somatic cell nuclear transfer is used to preserve the last surviving cow of the Enderby Island cattle breed. Reprod Fertil Dev 1998; 10(4):369–378.

    Article  PubMed  CAS  Google Scholar 

  156. Woolliams JA, Wilmut I. New advances in cloning and their potential impact on genetic variation in livestock. Anim Sci 1999; 68:245–256.

    Google Scholar 

  157. Wells DN. The integration of cloning by nuclear transfer in the conservation of animal genetic resources. In: Simm G, Villanuva B, DSK, Townsend S, eds. Farm Animal Genetic Resources. British Society of Animal Science, 2004:30:223–241.

    Google Scholar 

  158. Mackle TR, Bryant AM, Petch SF et al. Nutritional influences on the composition of milk from cows of different protein phenotypes in New Zealand. J Dairy Sci 1999; 82(1):172–180.

    Article  PubMed  CAS  Google Scholar 

  159. Hein WR, Griebel PJ. A road less travelled: Large animal models in immunological research. Nat Rev Immunol 2003; 3(1):79–84.

    Article  PubMed  CAS  Google Scholar 

  160. Archer GS, Dindot S, Friend TH et al. Hierarchical phenotypic and epigenetic variation in cloned swine. Biol Reprod 2003; 69(2):430–436.

    Article  PubMed  CAS  Google Scholar 

  161. Lanza R, Shieh JH, Wettstein PJ et al. Long-term bovine hematopoietic engraftment with done-derived stem cells. Cloning Stem Cells 2005.

    Google Scholar 

  162. Lanza RP, Chung HY, Yoo JJ et al. Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol 2002; 20(7):689–696.

    Article  PubMed  CAS  Google Scholar 

  163. Laible G, Wells DN. Transgenic cattle applications: the transition from promise to proof. In: Harding, SE, ed. Biotechnology & Genetic Engineering Reviews, Vol. 22. Paris: Lavoisier Publishing, 2006:125–50.

    Google Scholar 

  164. Schnieke AE, Kind AJ, Ritchie WA et al. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 1997; 278(5346):2130–2133.

    Article  PubMed  CAS  Google Scholar 

  165. Kuroiwa Y, Kasinathan P, Matsushita H et al. Sequential targeting of the genes encoding immunoglobulin-mu and prion protein in cattle. Nat Genet 2004; 36(7):775–780.

    Article  PubMed  CAS  Google Scholar 

  166. Forsyth JT, Troskie HE, Brophy B et al. Utilising preimplantation genetic diagnosis and OPU-IYP-ET to generate multiple progeny of predetermined genotype from cloned transgenic heifers. Reproduction, Fertility and Development 2005; 17, (Abstract 330).

    Google Scholar 

  167. Siewerdt F, Eisen EJ, Murray JD. Direct and correlated responses to short-term selection for 8-week body weight in lines of transgenic (oMtla-oGH) mice. In: Murray JD, Anderson GB, Oberbauer AM et al, eds. Transgenic Animals in Agriculture. Oxon, UK: CABI Publishing, 1999:231–250.

    Google Scholar 

  168. Brink MF, Bishop MD, Pieper FR. Developing efficient strategies for the generation of transgenic cattle which produce biopharmaceuticals in milk. Theriogenology 2000; 53(1):139–148.

    Article  PubMed  CAS  Google Scholar 

  169. Rudolph NS. Biopharmaceutical production in transgenic livestock. Trends Biotechnol 1999; 17(9):367–374.

    Article  PubMed  CAS  Google Scholar 

  170. Zhu L, van de Lavoir MC, Albanese J et al. Production of human monoclonal antibody in eggs of chimeric chickens. Nat Biotechnol 2005; 23(9):1159–1169.

    Article  PubMed  CAS  Google Scholar 

  171. Robl JM, Kasinathan P, Sullivan E et al. Artificial chromosome vectors and expression of complex proteins in transgenic animals. Theriogenology 2003; 59(1):107–113.

    Article  PubMed  CAS  Google Scholar 

  172. Karatzas CN. Designer milk from transgenic clones. Nat Biotechnol 2003; 21(2):138–139.

    Article  PubMed  CAS  Google Scholar 

  173. Wall RJ, Kerr DE, Bondioli KR. Transgenic dairy cattle: Genetic engineering on a large scale. J Dairy Sci 1997; 80(9):2213–2224.

    Article  PubMed  CAS  Google Scholar 

  174. Brophy B, Smolenski G, Wheeler T et al. Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein. Nat Biotechnol 2003; 21(2):157–162.

    Article  PubMed  CAS  Google Scholar 

  175. Muller M, Brem G. Transgenic approaches to the increase of disease resistance in farm animals. Rev Sci Tech 1998; 17(1):365–378.

    PubMed  CAS  Google Scholar 

  176. Bueler H, Aguzzi A, Sailer A et al. Mice devoid of PrP are resistant to scrapie. Cell 1993; 73(7):1339–1347.

    Article  PubMed  CAS  Google Scholar 

  177. Perrier V, Kaneko K, Safar J et al. Dominant-negative inhibition of prion replication in transgenic mice. Proc Natl Acad Sci USA 2002; 99(20):13079–13084.

    Article  PubMed  CAS  Google Scholar 

  178. Denning C, Burl S, Ainslie A et al. Deletion of the alpha(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nat Biotechnol 2001; 19(6):559–562.

    Article  PubMed  CAS  Google Scholar 

  179. Cyranoski D. Koreans rustle up madness-resistant cows. 2003; 426(6968):743.

    CAS  Google Scholar 

  180. Wall RJ, Powell AM, Paape MJ et al. Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 2005; 23(4):445–451.

    Article  PubMed  CAS  Google Scholar 

  181. Ward KA, Brownlee AG, Leish Z et al. Proceedings of the VII world conference on animal production. Edmonton, Canada: 1993:1:267.

    Google Scholar 

  182. Ward KA. Transgene-mediated modifications to animal biochemistry. Trends Biotechnol 2000; 18(3):99–102.

    Article  PubMed  CAS  Google Scholar 

  183. Golovan SP, Meidinger RG, Ajakaiye A et al. Pigs expressing salivary phytase produce low-phosphorus manure. Nat Biotechnol 2001; 19(8):741–745.

    Article  PubMed  CAS  Google Scholar 

  184. Forsberg EJ. Commercial applications of nuclear transfer cloning: Three examples. Reprod Fertil Dev 2005; 17(2):59–68.

    Article  PubMed  CAS  Google Scholar 

  185. Tsunoda Y, Kato Y. Full-term development after transfer of nuclei from 4-cell and compacted morula stage embryos to enucleated oocytes in the mouse. J Exp Zool 1997; 278(4):250–254.

    Article  PubMed  CAS  Google Scholar 

  186. Humpherys D, Eggan K, Akutsu H et al. Epigenetic instability in ES cells and cloned mice. Science 2001; 293(5527):95–97.

    Article  PubMed  CAS  Google Scholar 

  187. Yabuuchi A, Yasuda Y, Kato Y et al. Effects of nuclear transfer procedures on ES cell cloning efficiency in the mouse. J Reprod Dev 2004; 50(2):263–268.

    Article  PubMed  Google Scholar 

  188. Ogura A, Inoue K, Takano K et al. Birth of mice after nuclear transfer by electrofusion using tail tip cells. Mol Reprod Dev 2000; 57(1):55–59.

    Article  PubMed  CAS  Google Scholar 

  189. Wakayama T, Yanagimachi R. Cloning of male mice from adult tail-tip cells. Nat Genet 1999; 22(2):127–128.

    Article  PubMed  CAS  Google Scholar 

  190. Ogura A, Inoue K, Ogonuki N et al. Production of male cloned mice from fresh, cultured, and cryopreserved immature Sertoli cells. Biol Reprod 2000; 62(6):1579–1584.

    Article  PubMed  CAS  Google Scholar 

  191. Kato Y, Tani T, Tsunoda Y. Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows. J Reprod Fertil 2000; 120(2):231–237.

    Article  PubMed  CAS  Google Scholar 

  192. Galli C, Duchi R, Moor RM et al. Mammalian leukocytes contain all the genetic information necessary for the development of a new individual. Cloning 1999; 1(3):161–170.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Oback, B., Wells, D.N. (2007). Cloning Cattle. In: Sutovsky, P. (eds) Somatic Cell Nuclear Transfer. Advances in Experimental Medicine and Biology, vol 591. Springer, New York, NY. https://doi.org/10.1007/978-0-387-37754-4_3

Download citation

Publish with us

Policies and ethics