Skip to main content

Design of Distortion-Invariant Optical ID Tags for Remote Identification and Verification of Objects

  • Chapter
Physics of Automatic Target Recognition

Abstract

Optical identification (ID) tags [1] have a promising future in a number of applications such as the surveillance of vehicles in transportation, control of restricted areas for homeland security, item tracking on conveyor belts or other industrial environment, etc. More specifically, passive optical ID tag [1] was introduced as an optical code containing a signature (that is, a characteristic image or other relevant information of the object), which permits its real-time remote detection and identification. Since their introduction in the literature [1], some contributions have been proposed to increase their usefulness and robustness. To increase security and avoid counterfeiting, the signature was introduced in the optical code as an encrypted function [2–5] following the double-phase encryption technique [6]. Moreover, the design of the optical ID tag was done in such a way that tolerance to variations in scale and rotation was achieved [2–5]. To do that, the encrypted information was multiplexed and distributed in the optical code following an appropriate topology. Further studies were carried out to analyze the influence of different sources of noise. In some proposals [5, 7], the designed ID tag consists of two optical codes where the complex-valued encrypted signature was separately introduced in two real-valued functions according to its magnitude and phase distributions. This solution was introduced to overcome some difficulties in the readout of complex values in outdoors environments. Recently, the fully phase encryption technique [8] has been proposed to increase noise robustness of the authentication system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Javidi. Real-time remote identification and verification of objects using optical ID tags. Opt. Eng., 42(8):1–3, 2003.

    Article  Google Scholar 

  2. E. Pérez-Cabré and B. Javidi. Scale and rotation invariant optical ID tags for automatic vehicle identification and authentication. IEEE Trans. Veh. Technol., 54(4):1295–1303, 2005.

    Article  Google Scholar 

  3. E. Pérez-Cabré, and B. Javidi. Distortion-invariant ID tags for object identification. Proc. SPIE 5611:33–41, 2004.

    Article  ADS  Google Scholar 

  4. E. Pérez-Cabré, B. Javidi, and M. S. Millán. Detection and authentication of objects by using distortion-invariant optical ID tags, Proc. SPIE. 5827:69–80, 2005.

    Article  ADS  Google Scholar 

  5. E. Pérez-Cabré, M. S. Millán, and B. Javidi. Remote object authentication using distortion-invariant ID tags. Proc. SPIE, 5908:59080N-1–59080N-13, 2005.

    ADS  Google Scholar 

  6. Ph. Réfrégier and B. Javidi. Optical image encryption base don input plane and Fourier plane random encoding. Opt. Lett. 20(7):767–769, 1995.

    Article  ADS  Google Scholar 

  7. E. Pérez-Cabré, M. S. Millán, B. Javidi. Remote optical ID tag recognition and verification using fully spatial phase multiplexing. Proc. SPIE. 5986:598602-1–598602-13, 2005.

    Google Scholar 

  8. N. Towghi, B. Javidi, Z. Luo. Fully phase encrypted image processor. JOSA A. 16(8):1915–1927, 1999.

    Article  ADS  Google Scholar 

  9. J. W. Goodman. Introduction to Fourier Optics, 2nd ed. McGraw-Hill, New York, 1996.

    Google Scholar 

  10. B. Javidi, L. Bernard, N. Towghi. Noise performance of double-phase encryption compared with XOR encryption. Opt. Eng. 38:9–19, 1999.

    Article  ADS  Google Scholar 

  11. F. Goudail, F. Bollaro, Ph. Réfrégier, B. Javidi. Influence of perturbation in a double phase encoding system. JOSA A. 15:2629–2638, 1998.

    Article  ADS  Google Scholar 

  12. B. Javidi, A. Sergent. Fully phase encoded key and biometrics for security verification. Opt. Eng. 36(3):935–942, 1997.

    Article  ADS  Google Scholar 

  13. A. Mahalanobis, A review of correlation filters and their application for scene matching. Optoelectronic Devices and Systems for Processing. Critical Review of Optical Science Technology, SPIE, Bellingham, WA, pp. 240–260, 1996.

    Google Scholar 

  14. IEEE Trans. Image Process. Special issue on Automatic Target Detection and Recognition, 6(1), 1997.

    Google Scholar 

  15. B. Javidi, ed. Smart Imaging Systems. SPIE Press, SPIE, Bellingham, WA, 2001.

    Google Scholar 

  16. B. Javidi, ed. Image Recognition and Classification: Algorithms, Systems and Applications. Marcel Dekker, New York, 2002.

    MATH  Google Scholar 

  17. C. F. Hester, D. Casasent. Multivariant technique for multiclass pattern recognition, Appl. Opt. 19(11):1758–1761, 1980.

    Article  ADS  Google Scholar 

  18. H. J. Caulfield. Linear combinations of filters for character recognition: a unified treatment, Appl. Opt. 19, 3877–3879, 1980.

    Article  ADS  Google Scholar 

  19. H. Y. S. Li, Y. Qiao, D. Psaltis. Optical network for real-time face recognition, Appl. Opt. 32(26):5026–5035, 1993.

    Article  ADS  Google Scholar 

  20. T. D. Wilkinson, Y. Perillot, R. J. Mears, J. L. Bougrenet de la Tocnaye, Scale-invariant optical correlators using ferroelectric liquid-crystal spatial light modulators, Appl. Opt. 34(11):1885–1890, 1995.

    Article  ADS  Google Scholar 

  21. B. Javidi, D. Painchaud. Distortion-invariant pattern recognition with Fourier-plane nonlinear filters, Appl. Opt. 35(2):318–331, 1996.

    Article  ADS  Google Scholar 

  22. L. C. Wang, S. Z. Der, N. M. Nasrabadi. Automatic target recognition using feature-decomposition and data-decomposition modular neural networks, IEEE Trans. Image Process. 7(8):1113–1121, 1998.

    Article  ADS  Google Scholar 

  23. E. Pérez, B. Javidi. Nonlinear distortion-tolerant filters for detection of road signs in background noise, IEEE Trans. Veh. Technol. 51(3):567–576, 2002.

    Article  Google Scholar 

  24. J. L. Turin. An introduction to matched filters, IRE Trans. Inf. Theory. 6, 311–329, 1960.

    Article  MathSciNet  Google Scholar 

  25. B. Javidi. Nonlinear joint power spectrum based optical correlation, Appl. Opt. 28(12):2358–2367, 1989.

    Article  ADS  Google Scholar 

  26. M. S. Millán, E. Pérez, K. Chalasinska-Macukow. Pattern recognition with variable discrimination capability by dual non-linear optical correlation, Opt. Commun. 161, 115–122, 1999.

    Article  ADS  Google Scholar 

  27. E. Pérez, M. S. Millán, K. Chalasinska-Macukow. Optical pattern recognition with adjustable sensitivity to shape and texture, Opt. Commun. 202, 239–255, 2002.

    Article  ADS  Google Scholar 

  28. S. H. Hong, B. Javidi. Optimum nonlinear composite filter for distortion-tolerant pattern recognition, Appl. Opt. 41(11):2172–2178, 2003.

    Article  ADS  Google Scholar 

  29. B. Javidi, J. L. Horner. Real-Time Optical Information Processing. Academic Press, Boston, 1994.

    Google Scholar 

  30. J. L. Horner. Metrics for assessing pattern recognition performance, Appl. Opt. 31(2):165–166, 1992.

    Article  ADS  Google Scholar 

  31. B. V. K. Vijaya Kumar, L. Hassebrook. Performance measures for correlation filters, Appl. Opt. 29(20):2997–3006, 1990.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Pérez-Cabré, E., Millán, M.S., Javidi, B. (2007). Design of Distortion-Invariant Optical ID Tags for Remote Identification and Verification of Objects. In: Sadjadi, F., Javidi, B. (eds) Physics of Automatic Target Recognition. Advanced Sciences and Technologies for Security Applications, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-0-387-36943-3_12

Download citation

Publish with us

Policies and ethics