Advertisement

Data Mining pp 235-254 | Cite as

Discretization Methods

  • Krzysztof J. Cios
  • Roman W. Swiniarski
  • Witold Pedrycz
  • Lukasz A. Kurgan
Chapter

Keywords

Cluster Center Class Label Machine Learning Algorithm Discretization Scheme Continuous Attribute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  1. 1.
    Cios, K.J., Pedrycz, W., and Swiniarski, R. 1998. Data Mining Methods for Knowledge Discovery, KluwerGoogle Scholar
  2. 2.
    Ching, J.Y., Wong, A.K.C., and Chan, K.C.C. 1995. Class-dependent discretization for inductive learning from continuous and mixed-mode data. IEEE Transactions on PAMI, 17:641–651Google Scholar
  3. 3.
    Cios, K.J., and Kurgan, L. 2004. CLIP4: Hybrid inductive machine learning algorithm that generates inequality rules. Information Sciences, 163(1–3): 37–83CrossRefGoogle Scholar
  4. 4.
    Doughherty, J., Kohavi, R., and Sahami, M. 1995. Supervised and unsupervised discretization of continuous features. In: Machine Learning: Proceedings of the 12th International Conference, Prieditis, A., and Russell S. (Eds.)Google Scholar
  5. 5.
    Fayyad, U.M., and Irani, K.B. 1992. On the handling of continuous-valued attributes in decision tree generation.Machine Learning, 8:87–102zbMATHGoogle Scholar
  6. 6.
    Fayyad, U.M., and Irani, K.B. 1993. Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of the 13th Inernationa lJoint Conference on Artificial Intelligence, Morgan-Kaufmann, 1022–1027Google Scholar
  7. 7.
    Gama, J., Torgo, L., and Soares, C. 1998. Dynamic discretization of continuous attributes. In: Proceedings of the Sixth Ibero-American Conference on Artificial Intelligence, 160–169Google Scholar
  8. 8.
    Holte, R.C. 1993. Very simple classification rules perform well on most commonly used data sets. Machine Learning,11:63–90zbMATHCrossRefGoogle Scholar
  9. 9.
    Kerber, R. 1992. Chimerge: discretization of numeric attributes. In: Proceedings of the 10th National Conference on Artificial Intelligence, MIT Press, 123–128Google Scholar
  10. 10.
    Kurgan, L., and Cios, K.J., 2004. CAIM discretization algorithm. IEEE Transactions on Knowledge and Data Engineering, 16(2):145–153CrossRefGoogle Scholar
  11. 11.
    Paterson, A., and Niblett, T.B. 1987. ACLS Manual. Edinburgh Intelligent Terminals, Ltd.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Krzysztof J. Cios
    • 1
    • 2
  • Roman W. Swiniarski
    • 3
  • Witold Pedrycz
    • 4
  • Lukasz A. Kurgan
    • 5
  1. 1.Virginia Commonwealth University Computer Science DeptRichmond
  2. 2.University of ColoradoUSA
  3. 3.Computer Science DeptSan Diego State University & Polish Academy of SciencesSan DiegoUSA
  4. 4.Electrical and Computer Engineering DeptUniversity of AlbertaEdmontonCanada
  5. 5.Electrical and Computer Engineering DeptUniversity of AlbertaEdmontonCanada

Personalised recommendations