Advertisement

Data Mining pp 133-233 | Cite as

Feature Extraction and Selection Methods

  • Krzysztof J. Cios
  • Roman W. Swiniarski
  • Witold Pedrycz
  • Lukasz A. Kurgan
Chapter

Keywords

Feature Selection Feature Extraction Independent Component Analysis Input Pattern Feature Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  1. 1.
    Ainsworth, W.A. 1988. Speech Recognition by Machine, Peter Peregrinus Ltd., London, UKGoogle Scholar
  2. 2.
    Almuallim, H., and Dietterich, T.G. 1992. Efficient algorithms for identifying relevant features. Proceedings of the Ninth Canadian Conference on Artificial Intelligence, 38–45. Vancouver, CanadaGoogle Scholar
  3. 3.
    Bazan, J.G., Skowron, A., and Swiniarski, R. 2006.Rough sets and vague concept approximation: From sample approximation to adaptive learning, Transactions on Rough Sets V; Journal Subline, Lecture Notes in Computer Science 4100, Springer, Heidelberg, 39–62Google Scholar
  4. 4.
    Bell, A.J., and Sejnowski, T.J. 1995. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7:1129–1159CrossRefGoogle Scholar
  5. 5.
    Burrus, C., Gopinath, R., and Guo, H. 1998. Introduction to Wavelets and Wavelet Transformations: A Primer, Prentice HallGoogle Scholar
  6. 6.
    Cios, K.J., Pedrycz, W., and Swiniarski, R. 1998. Data Mining Methods for Knowledge Discovery, KluwerGoogle Scholar
  7. 7.
    Duda, R.O., and Hart, P.E. 2001. Pattern Recognition and Scene Analysis, WileyGoogle Scholar
  8. 8.
    Fant, C.G. 1973. Speech Sounds and Features, MIT PressGoogle Scholar
  9. 9.
    Gersho, A., and Gray, R. 1992. Vector Quantization and Signal Compression, Boston, KluwerGoogle Scholar
  10. 10.
    Grzymala-Busse, J.W, Kostek, B., Swiniarski, R., and Szczuka, M. 2004. (Editors-in Chief of a special I volume) Transaction on Rough Sets I. In (Editors-in-Chief Peters, J., and Skowron, A.), Lecture Notes in Computer Sciences on Rough Sets, 3100, Springer, Berlin, New York, pp. 1–404Google Scholar
  11. 11.
    Hyvarinen, A., Karhunen, J., and Oja, E. 2001. Independent Component Analysis, John Wiley, New YorkGoogle Scholar
  12. 12.
    John, G., Kohavi, R., and Pfleger, K. 1994 Irrelevant features and the subset selection problem. Proceedings of the Eleventh International Conference on Machine Learning (ICML-94), 121–129, New Brunswick, NJGoogle Scholar
  13. 13.
    Khotanzad, A., Hong, Y.H. 1990 Invariant image recognition by Zernike moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(5):489–497CrossRefGoogle Scholar
  14. 14.
    Kittler, J. 1986 Feature selection and extraction. In Young, T.Y., and Fu, K.S. (Eds.), Handbook of Pattern Recognition and Image Processing, Academic Press, 59–83Google Scholar
  15. 15.
    Kohonen, T. 1997 Self-Organizing Maps, SpringerGoogle Scholar
  16. 16.
    Kononenko, I. 1994 Estimating attributes: Analysis and extension of Relief. Proceedings of European Conference on Machine Learning, 171–182, Catania, ItalyGoogle Scholar
  17. 17.
    Langley, P. 1994 Selection of relevant features in machine learning. Proceedings of the AAAI Fall Symposium on Relevance, 140–144, Orlando, FLGoogle Scholar
  18. 18.
    Linde, Y., Buzo, A., and Gray, R. 1980 An algorithm for vector quantizer design. IEEE Transaction on Communications, 28(1):84–94CrossRefGoogle Scholar
  19. 19.
    Marill, T., and Green, D. 1963 On the effectiveness of receptors in recognition systems. IEEE Transactions on Information Theory, 9:11–17CrossRefGoogle Scholar
  20. 20.
    Narendra, P.M., and Fukunaga, K. 1977 A branch and bound algorithm for feature subset selection. IEEE Transactions on Computers, C–26:917–922CrossRefGoogle Scholar
  21. 21.
    Rabiner, L.R., and Juang, B.H. 1993 Fundamentals of Speech Recognition, Prentice Hall, Englewood Cliffs, N.J.Google Scholar
  22. 22.
    Skowron, A., Swiniarski, R., Synak, P., and Peters, J.F. 2004 Approximation Spaces and Information Granulation. Tsumoto, S., Slowinski, R., and Komorowski, J. (Eds.) Rough Sets and Current Trends in Computing, Proceedings of 4th International Conference, RSCTC 2004, Uppsala, Sweden, Springer, pp. 116–126Google Scholar
  23. 23.
    Swiniarski, R. 2004. Application of Zernike Moments, Independent Component Analysis, and Rough and Fuzzy Classifier for Hand-Written Character Recognition. In Klopotek, M.K., Wierzchon, S., and Trojanowski, K. (Eds.), Intelligent Information Processing and Web Mining. Proceedings of the International IIS:IIPWM’04 Conference. Zakopane, Poland, May 17–20, Springer, pp. 623–632Google Scholar
  24. 24.
    Swiniarski, R., Lim Hun Ki, Shin Joo Heon and Skowron, A. 2006. Independent Component Analysis, Principal Component Analysis and Rough Sets in Hybrid Mammogram Classification. Proceedings of the 2006 International Conference on Image Processing, Computer Vision, & Pattern Recognition, volume II, 640–645, Las VegasGoogle Scholar
  25. 25.
    Swiniarski, R., and Skowron, A. 2004. Independent Component Analysis and Rough Sets in Face Recognition. In Grzymala-Busse, of a special I volume) Transaction on Rough Sets I. In (Editors-in-Chief Peters, J., and Skowron, A.), Lecture Notes in Computer Sciences on Rough Sets, 3100, Springer, Berlin, New York, pp. 392–404Google Scholar
  26. 26.
    Swiniarski, R. and Skowron, A. 2003. Rough sets methods in feature selection and recognition. Pattern Recognition Letters, 24(6):883–849CrossRefGoogle Scholar
  27. 27.
    Yu, B., and Yuan, B. 1993. A more efficient branch and bound algorithm for feature selection. Pattern Recognition, 26(6):883–889CrossRefMathSciNetGoogle Scholar
  28. 28.
    Zernike, F. 1934. Beugungstheorie des schneidenverfahrens und seimer verbesserten form, der phasenkontrastmethode, Physica, 1:689–706zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Krzysztof J. Cios
    • 1
    • 2
  • Roman W. Swiniarski
    • 3
  • Witold Pedrycz
    • 4
  • Lukasz A. Kurgan
    • 5
  1. 1.Computer Science DeptVirginia Commonwealth UniversityRichmond
  2. 2.University of ColoradoUSA
  3. 3.Computer Science DeptSan Diego State University & Polish Academy of SciencesSan DiegoUSA
  4. 4.Electrical and Computer Engineering DeptUniversity of AlbertaEdmontonCanada
  5. 5.Electrical and Computer Engineering DeptUniversity of AlbertaEdmontonCanada

Personalised recommendations