Advertisement

Data Mining pp 69-91 | Cite as

Knowledge Representation

  • Krzysztof J. Cios
  • Roman W. Swiniarski
  • Witold Pedrycz
  • Lukasz A. Kurgan
Chapter

Keywords

Membership Function Fuzzy Number Knowledge Representation Interval Analysis Fuzzy Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bargiela, A., and Pedrycz, W. 2003. Granular Computing: An Introduction, Kluwer Academic PublishersGoogle Scholar
  2. 2.
    Bubnicki, Z. 2002. Uncertain Logics, Variables and Systems. Lecture Notes in Control and Information Sciences, no. 276, Springer VerlagGoogle Scholar
  3. 3.
    Butnariu, D., and Klement, E.P. 1983. Triangular Norm Based Measures and Games with Fuzzy Coalitions, Kluwer Academic PublishersGoogle Scholar
  4. 4.
    Cowell, R.G., David A.P., Lauritzen, S.L., and Spiegelhalter, D.J. 1999. Probabilistic Networks and Expert Systems, Springer-VerlagGoogle Scholar
  5. 5.
    Edwards, D. 1995. Introduction to Graphical Modelling, Springer-VerlagGoogle Scholar
  6. 6.
    Giarratano, J., and Riley, G. 1994. Expert Systems: Principles and Programming, 2nd edition, PWS PublishingGoogle Scholar
  7. 7.
    Hansen, E. 1975. A generalized interval arithmetic, Lecture Notes in Computer Science, Springer Verlag, 29: 7–18Google Scholar
  8. 8.
    Jaulin, L., Kieffer, M., Didrit, O., and Walter, E. 2001. Applied Interval Analysis, Springer VerlagGoogle Scholar
  9. 9.
    Lenat, D.B., and Guha, R.V. 1990. Building Large Knowledge-Based Systems, Addison WesleyGoogle Scholar
  10. 10.
    Mendel J.M., and John RIB. 2002. Type-2 fuzzy sets made simple, IEEE Transactions. on Fuzzy Systems, 10 (2002): 117–127CrossRefGoogle Scholar
  11. 11.
    Moore R. 1966. Interval Analysis, Prentice HallGoogle Scholar
  12. 12.
    Pal, S.K., and Skowron, A. (Eds.). 1999. Rough Fuzzy Hybridization. A New Trend in Decision-Making, Springer VerlagGoogle Scholar
  13. 13.
    Pawlak, Z. 1991. Rough Sets. Theoretical Aspects of Reasoning About Data, Kluwer Academic PublishersGoogle Scholar
  14. 14.
    Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems, Morgan KaufmannGoogle Scholar
  15. 15.
    Pedrycz, W. 1998. Shadowed sets: representing and processing fuzzy sets, IEEE Transactions. on Systems, Man, and Cybernetics, part B, 28: 103–109CrossRefGoogle Scholar
  16. 16.
    Pedrycz, W., and Gomide, F. 1998. An Introduction to Fuzzy Sets; Analysis and Design. MIT PressGoogle Scholar
  17. 17.
    Pedrycz, W. 1999. Shadowed sets: bridging fuzzy and rough sets, In: Rough Fuzzy Hybridization. A New Trend in Decision-Making, Pal, S.K., and Skowron, A. (Eds), Springer Verlag, 179–199Google Scholar
  18. 18.
    Pedrycz, W., and Vukovich, G. 2000. Investigating a relevance of fuzzy mappings, IEEE Transactions. on Systems Man and Cybernetics, 30: 249–262CrossRefGoogle Scholar
  19. 19.
    Pedrycz, W. (Ed.). 2001. Granular Computing: An Emerging Paradigm, Physica VerlagGoogle Scholar
  20. 20.
    Polkowski, L., and Skowron, A. (Eds.). 1998. Rough Sets in Knowledge Discovery, Physica VerlagGoogle Scholar
  21. 21.
    Russell, S., and Nonig, P. 1995. Artificial Intelligence: A Modern Approach, Prentice-HallGoogle Scholar
  22. 22.
    Skowron, A. 1989. Rough decision problems in information systems, Bulletin de l’Academie Polonaise des Sciences (Tech), 37: 59–66Google Scholar
  23. 23.
    Sowa, J. 2000. Knowledge Representation, Brooks/ColeGoogle Scholar
  24. 24.
    Warmus, M. 1956. Calculus of approximations, Bulletin de l’Academie Polonaise des Sciences, 4(5): 253–259zbMATHMathSciNetGoogle Scholar
  25. 25.
    Zadeh, L.A. 1965. Fuzzy sets, Information & Control, 8: 338–353zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Zadeh, L.A. 1979. Fuzzy sets and information granularity, In: Gupta, M.M., Ragade, R.K., and Yager,R.R. (Eds.), Advances in Fuzzy Set Theory and Applications, North Holland, 3–18Google Scholar
  27. 27.
    Zadeh, L.A. 1996. Fuzzy logic = Computing with words, IEEE Transactions on Fuzzy Systems, 4: 103–111CrossRefGoogle Scholar
  28. 28.
    Zadeh, L.A. 1997. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic, Fuzzy Sets and Systems, 90: 111–117zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Zadeh, L.A. 1999. From computing with numbers to computing with words-from manipulation of measurements to manipulation of perceptions, IEEE Transactions. on Circuits and Systems,45:105–119MathSciNetGoogle Scholar
  30. 30.
    Zadeh, L.A., and Kacprzyk, J. (Eds.). 1999. Computing with Words in Information/Intelligent Systems, Physica-VerlagGoogle Scholar
  31. 31.
    Zimmermann, H.J., 2001. Fuzzy Set Theory and Its Applications, 4th edition, Kluwer Academic PublishersGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Krzysztof J. Cios
    • 1
    • 2
  • Roman W. Swiniarski
    • 3
  • Witold Pedrycz
    • 4
  • Lukasz A. Kurgan
    • 5
  1. 1.Computer Science DeptVirginia Commonwealth UniversityRichmond
  2. 2.University of ColoradoUSA
  3. 3.Computer Science DeptSan Diego State University & Polish Academy of SciencesSan DiegoUSA
  4. 4.Electrical and Computer Engineering DeptUniversity of AlbertaEdmontonCanada
  5. 5.Electrical and Computer Engineering DeptUniversity of AlbertaEdmontonCanada

Personalised recommendations