Advertisement

Data Mining pp 469-486 | Cite as

Assessment of Data Models

  • Krzysztof J. Cios
  • Roman W. Swiniarski
  • Witold Pedrycz
  • Lukasz A. Kurgan

Keywords

Akaike Information Criterion True Positive Bayesian Information Criterion Receiver Operating Characteristic Receiver Operating Characteristic Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cios, K.J., Pedrycz, W., and Swiniarski, R. 1998. Data Mining Methods for Knowledge Discovery, KluwerGoogle Scholar
  2. 2.
    Duda, R.O., Hart, P.E., and Stork, D.G. 2001. Pattern Classification, WileyGoogle Scholar
  3. 3.
    Frank, I.E., and Todeshini, R. 1994. The Data Analysis Handbook, ElsevierGoogle Scholar
  4. 4.
    Gago, P., and Bentos, C. 1998. A metric for selection of the most promising rules. In Zytkow, J. and Quafafou, M. (Eds.), Proceedings of the 2nd European Conference on the Principles of Data Mining and Knowledge Discovery, Nantes, France, September, 19–27Google Scholar
  5. 5.
    Han, J. and Kamber, M. 2001. Data Mining: Concepts and Techniques, Morgan KaufmannGoogle Scholar
  6. 6.
    Hastie, T., Tibshirani, R., and Friedman, J. 2001. The Elements of Statistical Learning: Data Mining, Inference and Prediction. SpringerGoogle Scholar
  7. 7.
    Grunwald, P.D., Myung, I.J., and Pitt, M.A. (Eds.). 2005. Advances in Minimum Description Length Theory and Applications, MIT PressGoogle Scholar
  8. 8.
    Hilderman, R.J., and Hamilton, H.J. 1999. Knowledge discovery and interestingness measures: a survey. Technical Report CS 99–04, University of Regina, Saskatchewan, CanadaGoogle Scholar
  9. 9.
    Kamber, M., and Shinghal, R. 1996. Evaluating the interestingness of characteristic rules. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, August, 263–266Google Scholar
  10. 10.
    Kecman, V. 2001. Learning and Soft Computing, MIT PressGoogle Scholar
  11. 11.
    Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., and Verkamo, A.I. 1994. Finding interesting rules from large sets of discovered association rules. In: Adam, N.R., Bhargava, B.K., and Yesha, Y. (Eds), Proceedings of the 3rd International Conference on Information and Knowledge Management, Gaitersburg, Maryland, 401–407Google Scholar
  12. 12.
    Kurgan, L., Cios, K.J., Sontag, M., and Accurso, F. 2005. Mining the cystic fibrosis data. In: New Generation of Data Mining Applications, Kantardzic, M., and Zurada, J. (Eds.), IEEE Press – Wiley, 415–444Google Scholar
  13. 13.
    Moore, G.W., and Hutchins, G.M. 1983. Consistency versus completeness in medical decision-making: exemplar of 155 patients autopsied after coronary artery bypass graft surgery. Medical Informatics, London, July-September, 8(3): 197–207Google Scholar
  14. 14.
    Rissanen, J. 1989. Stochastic Complexity in Statistical Inquiry, World ScientificGoogle Scholar
  15. 15.
    Webb, A. 1999. Statistical Pattern Recognition, ArnoldGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Krzysztof J. Cios
    • 1
    • 2
  • Roman W. Swiniarski
    • 3
  • Witold Pedrycz
    • 4
  • Lukasz A. Kurgan
    • 5
  1. 1.Virginia Commonwealth University Computer Science DeptRichmond
  2. 2.University of ColoradoUSA
  3. 3.Computer Science DeptSan Diego State University & Polish Academy of SciencesSan DiegoUSA
  4. 4.Electrical and Computer Engineering DeptUniversity of AlbertaEdmontonCanada
  5. 5.Electrical and Computer Engineering DeptUniversity of AlbertaEdmontonCanada

Personalised recommendations