Advertisement

Data Mining pp 419-451 | Cite as

Supervised Learning: Neural Networks

  • Krzysztof J. Cios
  • Roman W. Swiniarski
  • Witold Pedrycz
  • Lukasz A. Kurgan

Keywords

Hide Layer Radial Basis Function Neuron Model Radial Basis Function Neural Network Radial Basis Function Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  1. 1.
    Broomhead, D.S., and Lowe, D. 1988 Multivariable functional interpolation and adaptive networks. Complex Systems,2:321–355zbMATHMathSciNetGoogle Scholar
  2. 2.
    Chen, S., Cowan, C.F.N., and Grant, P.M. 1991 Orthogonal least squares learning algorithm for radial basis function network.IEEE Transactions on Neural Networks, 2:302–309CrossRefGoogle Scholar
  3. 3.
    Cios, K.J., and Pedrycz, W. 1997 Neuro-fuzzy systems. In: Handbook on Neural Computation, Oxford University Press, D1.1–D1.8Google Scholar
  4. 4.
    Cios, K.J., Pedrycz, W., and Swiniarski R. 1998 Data Mining Methods for Knowledge Discovery, KluwerGoogle Scholar
  5. 5.
    Fiesler, E., and Cios, K.J. 1997 Supervised ontogenic neural networks. In: Handbook on Neural Computation, Oxford University Press, C1.7Google Scholar
  6. 6.
    Hebb, D.O. 1949 The Organization of Behavior, WileyGoogle Scholar
  7. 7.
    Jang, R., and Sun, C-T. 1993 Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Transactions on Neural Networks, 4:156–159CrossRefGoogle Scholar
  8. 8.
    Kecman, V., and Pfeiffer, B.M. 1994 Exploiting the structural equivalence of learning fuzzy systems and radial basis function neural networks. In: Proceedings of EUFIT’94, Aachen. 1:58–66Google Scholar
  9. 9.
    Kecman, V. 2001 Learning and Soft Computing, MIT PressGoogle Scholar
  10. 10.
    Lovelace, J., and Cios, K.J. 2007 A very simple spiking neuron model that allows for efficient modeling of complex systems. Neural Computation, (19):1–26CrossRefMathSciNetGoogle Scholar
  11. 11.
    McCulloch, W.S., and Pitts, W.H. 1943 A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematics and Biophysics, 5:115–133zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Pedrycz, W. 1998 Conditional fuzzy clustering in the design of radial basis function neural networks. IEEE Transactions on Neural Networks, 9(4):601–612CrossRefGoogle Scholar
  13. 13.
    Pedrycz, W., and Vasilakos, A.V. 1999 Linguistic models and linguistic modeling. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 29(6):745–757CrossRefGoogle Scholar
  14. 14.
    Poggio, T., and Girosi, F. 1990 Networks for approximation and learning. Proceedings of the IEEE, 78:1481–1497Google Scholar
  15. 15.
    Poggio, F. 1994 Regularization theory, radial basis functions and networks. In: From Statistics to Neural Networks: Theory and Pattern Recognition Applications, NATO ASI Series, 136:83–104Google Scholar
  16. 16.
    Song, S., Miller, K.D., and Abbot, L.F. 2000 Competitive Hebbian learning through spike timing-dependent synaptic plasticity, Nature Neuroscience, (3):9CrossRefGoogle Scholar
  17. 17.
    Swiercz, W., Cios, K.J., Staley, K., Kurgan, L., Accurso, F., and Sagel, S. 2006 New synaptic plasticity rule for networks of spiking neurons, IEEE Transactions on Neural Networks, 17(1):94–105CrossRefGoogle Scholar
  18. 18.
    Wang, X-L., and Mendel, J.M. 1992 Fuzzy basis functions, universal approximation and orthogonal least-squares learning. IEEE Transactions on Neural Networks, 3:807–814CrossRefGoogle Scholar
  19. 19.
    Wedding, D.K. II, and Cios, K.J. 1998 Certainty factors versus Parzen windows as reliability measures in RBF networks. Neurocomputing, 19(1–3):151–165CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Krzysztof J. Cios
    • 1
    • 2
  • Roman W. Swiniarski
    • 3
  • Witold Pedrycz
    • 4
  • Lukasz A. Kurgan
    • 5
  1. 1.Virginia Commonwealth University Computer Science DeptRichmond
  2. 2.University of ColoradoUSA
  3. 3.Computer Science DeptSan Diego State University & Polish Academy of SciencesSan DiegoUSA
  4. 4.Electrical and Computer Engineering DeptUniversity of AlbertaEdmontonCanada
  5. 5.Electrical and Computer Engineering DeptUniversity of AlbertaEdmontonCanada

Personalised recommendations