Advertisement

Data Mining pp 307-379 | Cite as

Supervised Learning: Statistical Methods

  • Krzysztof J. Cios
  • Roman W. Swiniarski
  • Witold Pedrycz
  • Lukasz A. Kurgan

Keywords

Feature Vector Probability Density Function Discriminant Function Supervise Learn Classification Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aitchison, J., and Dunsmore, I.R. 1975. Statistical Prediction Analysis, Cambridge University PressGoogle Scholar
  2. 2.
    Bernardo, J.M., and Smith, A.F.M. 1994. Bayesian Theory, WileyGoogle Scholar
  3. 3.
    Besag, J., Green, P., Higdon, D., and Mengersen, K. 1995. Bayesian computation and stochastic systems. StatSci, 10:3–66zbMATHMathSciNetGoogle Scholar
  4. 4.
    Bishop, C.M. 1995. Neural Networks for Pattern Recognition, Oxford PressGoogle Scholar
  5. 5.
    Bolstad, William M. 2004. Introduction to Bayesian Statistics, John WileyGoogle Scholar
  6. 6.
    Gauss C.F. 1809. Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientum.Google Scholar
  7. 7.
    Cios, K.J., Pedrycz, W., and Swiniarski, R. 1998. Data Mining Methods for Knowledge Discovery, KluwerGoogle Scholar
  8. 8.
    Devijver, P.A., and Kittler, J. 1982. Pattern Recognition: A Statistical Approach, Prentice HallGoogle Scholar
  9. 9.
    Draper, N.R., and Smith, H. 1996. Applied Regression Analysis Wiley Series in Probability and StatisticsGoogle Scholar
  10. 10.
    Duda, R.O., Hart, P.E., and Stork D.G. 2001. Pattern Classification, WileyGoogle Scholar
  11. 11.
    Fu, K.S. 1982. Syntactic Pattern Recognition and Applications, Prentice HallGoogle Scholar
  12. 12.
    Fukunaga, K. 1990. Introduction to Statistical Pattern Recognition, Academic PressGoogle Scholar
  13. 13.
    Gelman, A., Carlin, J., Stern, H., and Rubin, D. 1995. Bayesian Data Analysis, Chapman and HallGoogle Scholar
  14. 14.
    Hastie, T., and Tibshirani, R. 1994. Discriminant analysis by Gaussian mixtures. Technical report, AT&T Bell LaboratoriesGoogle Scholar
  15. 15.
    Hastie, T., and Tibshirani, R. 1996. Discriminant analysis by Gaussian mixtures. JRSSB, 58:158–176MathSciNetGoogle Scholar
  16. 16.
    Holmstrom, L., Koistinen, P., Laaksonen, J., and Oja, E. 1996. Comparison of Neural and Statistical Classifiers – Theory and Practice. Research Report A13, Rolf Evalinna Institute, University of Helsinki, FinlandGoogle Scholar
  17. 17.
    Kullback, S. 1959. Information Theory and Statistics, Dover PublicationsGoogle Scholar
  18. 18.
    Mackay, D.J.C. 2003. Information theory, inference, and learning algorithms, Cambridge University PressGoogle Scholar
  19. 19.
    Michie, D., Spiegelthalter, D.J., and Taylor, C.C. (Eds.). 1994. Machine Learning, Neural and Statistical Classification, Ellis HorwoodGoogle Scholar
  20. 20.
    Myers, R.H. 1986. Classical and Modern Regression with Applications, Boston, MA: Duxbury Press.zbMATHGoogle Scholar
  21. 21.
    Parzen, E. 1962. On estimation of a probability density function and mode. Annals of Mathematical Statistics, 33:1065–1076MathSciNetGoogle Scholar
  22. 22.
    Rawlings, J.O. 1988. Applied Regression Analysis: A Research Tool, Pacific Grove, CA: Wadsworth and Brooks/Cole Advanced Books and SoftwareGoogle Scholar
  23. 23.
    Ripley, B.D. 1996. Pattern Recognition and Neural Networks, Cambridge University PressGoogle Scholar
  24. 24.
    Specht, D.F. 1990. Probabilistic neural networks. Neural Networks, 3(1):109–118CrossRefGoogle Scholar
  25. 25.
    Webb, A. 1999. Statistical Pattern Recognition, ArnoldGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Krzysztof J. Cios
    • 1
    • 2
  • Roman W. Swiniarski
    • 3
  • Witold Pedrycz
    • 4
  • Lukasz A. Kurgan
    • 5
  1. 1.Computer Science DeptVirginia Commonwealth UniversityRichmond
  2. 2.University of ColoradoUSA
  3. 3.Computer Science DeptSan Diego State University & Polish Academy of SciencesSan DiegoUSA
  4. 4.Electrical and Computer Engineering DeptUniversity of AlbertaEdmontonCanada
  5. 5.Electrical and Computer Engineering DeptUniversity of AlbertaEdmontonCanada

Personalised recommendations