Advertisement

Data Mining pp 289-306 | Cite as

Unsupervised Learning: Association Rules

  • Krzysztof J. Cios
  • Roman W. Swiniarski
  • Witold Pedrycz
  • Lukasz A. Kurgan

Keywords

Association Rule Minimum Support Frequent Itemsets Association Rule Mining Support Count 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggrawa, C., and Yu, P. 1999. A new framework for itemset generation. Proceedings of the ACM Symposium on Principles of Database Systems, Seattle, USA, 18–24Google Scholar
  2. 2.
    Agrawal, R., Imielinski, T., and Swami, A. 1993. Mining association rules between sets of items in large databases. Proceedings of the 1993 ACM-SIGMOD International Conference on Management of Data, Washington, USA, 207–216Google Scholar
  3. 3.
    Agrawal, R., and Srikant, R. 1994. Fast algorithm for mining association rules. Proceedings of the 1994 International Conference on Very Large Databases, Santiago, Chile, 487–499Google Scholar
  4. 4.
    Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, A. 1996. Fast discovery of association rules. In Fayyad, U., Piatesky-Shapiro, G., Smyth, P., and Uthurusamy, R. (Eds.), Advances in Knowledge Discovery and Data Mining, AAAI Press/The MIT Press, Menlo Park, CA, 307–328Google Scholar
  5. 5.
    Brin, S., Motwani, R., and Silverstein, C. 1997. Beyond market basket: generalizing association rules to correlations. Proceedings of the 1997 ACM-SIGMOD International Conference on Management of Data, Tuscon, USA, 265–276Google Scholar
  6. 6.
    Chen, M., Han, J., and Yu, P. 1996. Data mining: an overview from a database perspective. IEEE Transactions on Knowledge and Data Engineering, 8:866–883CrossRefGoogle Scholar
  7. 7.
    Fukuda, T., Morimoto, Y., Morishita, S., and Tokuyama, T. 1996. Data mining using two-dimensional optimized association rules: scheme, algorithms and visualization. Proceedings of the 1996 ACM-SIGMOD International Conference on Management of Data, Montreal, Canada, 13–23Google Scholar
  8. 8.
    Han, J., and Fu, Y. 1995. Discovery of multiple-level association rules from large databases. Proceedings of the 1995 International Conference on Very Large Databases, Zurich, Swizerland, 420–431Google Scholar
  9. 9.
    Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns without candidate generation. Proceedings of the 2000 ACM-SIGMOD International Conference on Management of Data, Dallas, USA, 1–12Google Scholar
  10. 10.
    Han, K., and Kamber, M. 2001. Data Mining: Concepts and Techniques, Morgan Kaufmann, San Fransico, USAGoogle Scholar
  11. 11.
    Kamber, M., Han, J., and Chiang, J. 1997. Metarule-guided mining of multi-dimensional association rules using data cubes. Proceedings of the 1997 International Conference on Knowledge Discovery and Data Mining, Newport Beach, CA, USA, 207–210Google Scholar
  12. 12.
    Kantardzic, M. 2002. Data Mining: Concepts, Models, Methods, and Algorithms, Wiley-IEEE Press, Piscataway, NJ, USAGoogle Scholar
  13. 13.
    Lent, B., Swami, A., and Widom, J. 1997. Clustering association rules. Proceedings of the 1997 International Conference on Data Engineering, Birmingham, England, 220–231Google Scholar
  14. 14.
    Mannila, H., Toivonen, H., and Verkamo, A. 1994. Efficient algorithms for discovering association rules. Proceedings of the AAAI’94 Workshop on Knowledge Discovery in Databases, Seattle, Washington, USA, 181–192Google Scholar
  15. 15.
    Park, J., Chen, M., and Yu, P. 1995. An effective hash-based algorithm for mining association rules. Proceedings of the 1995 ACM-SIGMOD International Conference on Management of Data, San Jose, CA, USA, 175–186Google Scholar
  16. 16.
    Savasere, A., Omiecinski, E., and Navathe, S. 1995. An efficient algorithm for mining association rules in large databases. Proceeding of the 1995 International Conference on Very Large Databases, Zurich, Switzerland, 432–443Google Scholar
  17. 17.
    Srikant, R., and Agrawal, R. 1995. Mining generalized association rules. Proceedings of the 1995 International Conference on Very Large Databases, Zurich, Switzerland, 407–419Google Scholar
  18. 18.
    Srikant, R., and Agrawal, R. 1996. Mining quantitative association rules in large relational tables. Proceedings of the 1996 ACM-SIGMOD International Conference on Management of Data, Montreal, Canada, 1–12Google Scholar
  19. 19.
    Tan, P-N., Steinbach, M., and Kumar, V. 2005. Introduction to Data Mining, Pearson Addison WesleyGoogle Scholar
  20. 20.
    Toivonen, H. 1996. Sampling large databases for association rules. Proceedings of the 1996 Conference on Very Large Databases, Bombay, India, 134–145Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Krzysztof J. Cios
    • 1
    • 2
  • Roman W. Swiniarski
    • 3
  • Witold Pedrycz
    • 4
  • Lukasz A. Kurgan
    • 5
  1. 1.Computer Science DeptVirginia Commonwealth UniversityRichmond
  2. 2.University of ColoradoUSA
  3. 3.Computer Science DeptSan Diego State University & Polish Academy of SciencesSan DiegoUSA
  4. 4.Electrical and Computer Engineering DeptUniversity of AlbertaEdmontonCanada
  5. 5.Electrical and Computer Engineering DeptUniversity of AlbertaEdmontonCanada

Personalised recommendations