Skip to main content

Advanced Image-Guided External Beam Radiotherapy

  • Chapter
Radiation Oncology Advances

Part of the book series: Cancer Treatment and Research ((CTAR,volume 139))

In 2003, Schultz and Kagan speculated that even with a perfect ability to deliver the ideal radiation dose distribution, it would be unlikely that outcomes would be improved. They imagined a perfect radiation treatment machine, which they called the “Infinitron,” that could deliver a dose distribution with any dose level and a zero dose outside of the target volume. They proposed that the Infinitron might not be preferable to surgery except for the reduced morbidity that would accompany its use. Schultz and Kagan were overly pessimistic as their argument that better radiation technology would not affect cure was easily countered by Keall and Williamson (2003) who provided several examples to the contrary. However, Schultz and Kagan (2003) were correct on one point; without the knowledge of where the disease is and where it is not present, the Infinitron could not guarantee a cure. As more and better treatment systems to deliver radiation come into existence, the key to their use will be to identify the target volume more exactly and to ensure that the targeted region is treated as prescribed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Bentzen SM. Theragnostic imaging for radiation oncology: dose-painting by numbers. Lancet Oncol 2005; 6:112–117.

    Article  PubMed  Google Scholar 

  2. 2. Kim Y, Tomé WA. Risk-Adaptive Optimization: Selective Boosting of high-risk tumor subvolumes. Int J Radiat Oncol Biol Phys 2006; 66:1528–1542.

    PubMed  Google Scholar 

  3. 3. Tomé WA, Fowler JF: Selective boosting of tumor subvolumes. Int J Radiat Oncol Biol Phys 2000; 48(2):593–599.

    PubMed  Google Scholar 

  4. 4. Ling CC, Humm J, Larson S, Amols H, Fuks Z, Leibel S, Koutcher JA. Towards multidimensional radiotherapy (MD-CRT): Biological imaging and biological conformity. Int J Radiat Oncol Biol Phys 2000; 47:551–560.

    Article  CAS  PubMed  Google Scholar 

  5. 5. Koper PCM, Stroom JC, van Putten WLJ, et al. Acute morbidity reduction using 3DCRT for prostate carcinoma: a randomized study. Int J Radiat Oncol Biol Phys 1999; 43:727–734.

    CAS  PubMed  Google Scholar 

  6. 6. Nutting CM, Convery DJ, Cosgrove VP, et al. Reduction of small and large bowel irradiation using an optimized intensity-modulated pelvic radiotherapy technique in patients with prostate cancer. Int J Radiat Oncol Biol Phys 2000; 48:649–656.

    CAS  PubMed  Google Scholar 

  7. 7. Pirzkall A, Carol M, Lohr F, et al. Comparison of intensity-modulated radiotherapy with conventional conformal radiotherapy for complex-shaped tumors. Int J Radiat Oncol Biol Phys 2000; 48:1371–1380.

    Article  CAS  PubMed  Google Scholar 

  8. 8. Portelance L, Chao KSC, Grigsby PW, et al. Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum, and bladder doses in patients with cervical cancer receiving pelvic and para-aortic irradiation. Int J Radiat Oncol Biol Phys 2001; 51:261–266.

    CAS  PubMed  Google Scholar 

  9. Goitein M, Abrams M, Rowell D, et al. Multidimensional treatment planning. II. Beam’s-eye-view, back projection, and projection through CT sections. Int J Radiat Oncol Biol Phys 1983; 9:789–797.

    Google Scholar 

  10. 10. Sherouse G, Novins KL, Chaney EL. Computation of digitally reconstructed radiographs for use in radiotherapy. Int J Radiat Oncol Biol Phys 1990; 18:651–658.

    CAS  PubMed  Google Scholar 

  11. Ramsey CR, Arwood D, Scaperoth D, et al. Clinical application of digitally-reconstructed radiographs generated from magnetic resonance imaging for intracranial lesions. Int.J Radiat Oncol Biol Phys 1999; 45:797–802.

    Google Scholar 

  12. 12. Vigneault E, Pouliot J, Laverdiere J, et al. Electronic portal imaging device detection of radioopaque markers for the evaluation of prostate position during megavoltage irradiation–A clinical study. Int J Radiat Oncol Biol Phys 1997; 37:205–212.

    CAS  PubMed  Google Scholar 

  13. 13. Bergström P, Lofröth P-O, Widmark A. High-precision conformal radiotherapy (HPCRT) of prostate cancer-a new technique for exact positioning of the prostate at the time of treatment. Int J Radiat Oncol Biol Phys 1998; 42:305–311.

    PubMed  Google Scholar 

  14. Pang G, Beachey DJ, O’Brien PF, et al. Imaging of 1.0-mm-diameter radiopaque markers with megavoltage X-rays: an improved online imaging system. Int J Radiat Oncol Biol Phys 2002; 52:532–537.

    Google Scholar 

  15. ICRU Report 50, Prescribing, Recording and Reporting Photon Beam Therapy. Bethesda MD, 1993. International Commission on Radiation Units and Measurements (ICRU).

    Google Scholar 

  16. ICRU Report 62, Prescribing, Recording, and Reporting Photon Beam Therapy, Supplement to ICRU Report No. 50. Bethesda MD, 1999. International Commission on Radiation Units and Measurements (ICRU).

    Google Scholar 

  17. 17. Mubata CD, Bidmead AM, Ellingham LM, et al. Portal imaging protocol for radical dose-escalated radiotherapy treatment of prostate cancer. Int J Radiat Oncol Biol Phys 1998; 40:221–231.

    CAS  PubMed  Google Scholar 

  18. 18. Stroom JC, Olofsen-van Acht MJJ, Quint S, et al. On-line setup corrections during radiotherapy of patients with gynecologic tumors. Int J Radiat Oncol Biol Phys 2000; 46:499–506.

    Article  CAS  PubMed  Google Scholar 

  19. 19. Alasti H, Petric MP, Catton CN, et al.: Portal imaging for evaluation of daily on-line setup errors and off-line organ motion during conformal irradiation of carcinoma of the prostate. Int J Radiat Oncol Biol Phys 2001; 49:869–884.

    CAS  PubMed  Google Scholar 

  20. 20. Leong J. Use of digital fluoroscopy as an on-line verification device in radiation therapy. Phys Med Biol 1986; 31:985–992.

    Article  CAS  PubMed  Google Scholar 

  21. 21. Munro P, Rawlinson JA, Fenster A. A digital fluoroscopic imaging device for radiotherapy localization. Proc SPIE 1989; 1090:321–329.

    CAS  Google Scholar 

  22. 22. Meertens H, Bijold J, Strackee J. A method for the measurement of field placement errors in digital portal images. Phys Med Biol 1990; 35:299–323.

    Article  CAS  PubMed  Google Scholar 

  23. 23. Ezz A, Munro P, Porter AT, et al. Daily monitoring and correction of radiation field placement using a video-based portal imaging system: a pilot study. Int J Radiat Oncol Biol Phys 1992; 22:159–165.

    CAS  PubMed  Google Scholar 

  24. 24. Hornick DC, Litzenberg DW, Kam KL, et al. A tilt and roll device for automated correction of rotational setup errors. Med Phys 1998; 25:1739–1740.

    Article  CAS  PubMed  Google Scholar 

  25. 25. Wong J, Binns R, Cheng A, et al. On-line radiotherapy imaging with an array of fiber-optic image reducers. Int J Radiat Oncol Biol Phys 1990; 18:1477–1484.

    CAS  PubMed  Google Scholar 

  26. 26. Essers M, Hoogervoorst BR, van Herk M, et al. Dosimetric characteristics of a liquid-filled electronic portal imaging device. Int J Radiat Oncol Biol Phys 1995; 33:1265–1272.

    CAS  PubMed  Google Scholar 

  27. 27. Kirby MC, Williams PC. The use of an electronic portal imaging device for exit dosimetry and quality control measurements. Int J Radiat Oncol Biol Phys 1995; 31:593–603.

    CAS  PubMed  Google Scholar 

  28. 28. Zhu Y, Jiang X-Q, Van Dyk J. Portal dosimetry using a liquid ion chamber matrix: Dose response studies. Med. Phys. 1995; 22:1101–1106.

    Article  CAS  PubMed  Google Scholar 

  29. 29. Hansen VN, Evans PM, Swindell W: The application of transit dosimetry to precision radiotherapy. Med Phys 1996; 23:713–721.

    Article  CAS  PubMed  Google Scholar 

  30. 30. McNutt TR, Mackie TR, Reckwerdt PJ, et al. Modeling dose distributions from portal dose images using the convolution/superposition method. Med Phys 1996; 23:1381–1392.

    Article  CAS  PubMed  Google Scholar 

  31. 31. Balter JM, Chen GTY, Pelizzari CA, et al. On-line repositioning during treatment of the prostate: A study of potential limits and gains. Int J Radiat Oncol Biol Phys 1993; 27:137–143.

    CAS  PubMed  Google Scholar 

  32. 32. Van de Steene J, Van den Heuvel F, Bel A, et al. Electronic portal imaging with on-line correction of setup error in thoracic irradiation: Clinical evaluation. Int J Radiat Oncol Biol Phys 1998; 40:967–976.

    Article  PubMed  Google Scholar 

  33. 33. Remeijer P, Geerlof E, Ploeger L, et al. 3-D portal image analysis in clinical practice: an evaluation of 2-D and 3-D analysis techniques as applied to 30 prostate cancer patients. Int J Radiat Oncol Biol Phys 2000; 46:1281–1290.

    CAS  PubMed  Google Scholar 

  34. Senan S, van Sörnsen de Koste J, Samson M, Tankink H, Jansen P, Nowak PJCM, Krol ADG, Schmitz P, and Lagerwaard FJ. Evaluation of a target contouring protocol for 3D conformal radiotherapy in non-small cell lung cancer. Radiotherapy Oncol 1999; 53:247–255.

    Google Scholar 

  35. 35. Giraud P, Elles S, Helfre S, De Rycke Y, Servois V, Carette M, Alzieu C, Bondiau P, Dubray B, Touboul E, Housset M, Rosenwald J, and Cosset J. Conformal radiotherapy for lung cancer: different delineation of the gross tumor volume (GTV) by radiologists and radiation oncologists. Radiat Oncol 2002; 62:27–36.

    Article  Google Scholar 

  36. 36. Van de Steene J, Linthout N, de May J, Vinh-Hung V, Claassens C, Noppen M, Bel A, Storme G. Definition of gross tumor volume in lung cancer: inter-observer variability. Radiat Oncol 2002; 62:37–49.

    Article  Google Scholar 

  37. 37. Tai P, Van Dyk J, Yu E, et al. Variability of target volume delineation in cervical esophageal cancer. Int J Radiat Oncol Biol Phys 1998; 42:227–288.

    Google Scholar 

  38. 38. Hurkmans CW, Boger JH, Pieter BR, Russell NS, Jansen EPM, and Mijnheer BJ. Variability in target volume delineation on CT scans of the breast. Int J Radiat Oncol Biol Phys 2001; 50:1366–1372.

    CAS  PubMed  Google Scholar 

  39. 39. Logue JP, Sharrock CL, Cowan RA, Read G, Marrs J, Mott D. Clinical variability in target volume description in conformal radiotherapy planning. Int J Radiat Oncol Biol Phys 1998; 41:929–931.

    CAS  PubMed  Google Scholar 

  40. 40. Meijer GJ, Rasch C, Remeijer P, and Lebesque JV. Three-dimensional analysis of delineation errors, setup errors, and organ motion during radiotherapy of bladder cancer. Int J Radiat Oncol Biol Phys 2003; 55: 1277–1287.

    PubMed  Google Scholar 

  41. 41. Weiss E, Richter S, Krauss T, Metzelthin SI, Hille A, Pradier O, Sikmeyer B, Vorwerk H, Hess CF. Conformal radiotherapy planning of cervix carcinoma: Differences in the delineation of the clinical target volume: A comparison between gynaecologic and radiation oncologists. Radiotherapy Oncol 2003; 67:87–95.

    Article  Google Scholar 

  42. 42. Fowler J, Chappell R, Ritter M. The prospects for new treatments for prostate cancer. Int J Radiat Oncol Biol Phys 2002; 52:3–5.

    PubMed  Google Scholar 

  43. 43. Brenner DJ, Hall EJ. Fractionation and protraction for radiotherapy of prostate carcinoma. Int J Radiat Oncol Biol Phys 1999; 43:1095–1101.

    Article  CAS  PubMed  Google Scholar 

  44. 44. Brenner DJ. Toward optimal external-beam fractionation for prostate cancer. Int J Radiat Oncol Biol Phys 2000; 48:315–316.

    CAS  PubMed  Google Scholar 

  45. 45. D’Souza WD, Thames HD. Is the 4// ratio for prostate cancer low? Int J Radiat Oncol Biol Phys 2001; 51:1–3.

    PubMed  Google Scholar 

  46. 46. King CR, Fowler JF. A simple analytic derivation suggests that prostate cancer t// ratio is low. Int J Radiat Oncol Biol Phys 2001; 51:213–214.

    CAS  PubMed  Google Scholar 

  47. 47. Fowler J, Chappell R, Ritter M. Is 4// for prostate tumors really low? Int J Radiat Oncol Biol Phys 2001; 50:1021–1031.

    Article  CAS  PubMed  Google Scholar 

  48. 48. Brenner DJ, Martinez AA, Edmundson GK, et al. Direct evidence that prostate tumors show high sensitivity to fractionation (low m// ratio), similar to late-responding normal tissue. Int J Radiat Oncol Biol Phys 2002; 52:6–13.

    PubMed  Google Scholar 

  49. 49. Mehta M, Scrimger R, Mackie R et al. A new approach to dose escalation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2001; 49:23–33.

    CAS  PubMed  Google Scholar 

  50. 50. Fowler JF, Tomé WA, Fenwick JD, Mehta MP. Stereotactic Body radiotherapy: A challenge to conventional radiation oncology. Int J Radiat Oncol Biol Phys 2004; 60(4):1241–1256.

    PubMed  Google Scholar 

  51. 51. Mohan DS, Kupelian PA, Willoughby TR. Short-course intensity-modulated radiotherapy for localized prostate cancer with daily transabdominal ultrasound localization of the prostate gland. Int J Radiat Oncol Biol Phys 2000; 46:575–580.

    CAS  PubMed  Google Scholar 

  52. 52. Tomé WA, Fowler JF: On Cold Spots in Tumor Subvolumes. Med Phys 2002; 29:1590–1598.

    Article  PubMed  Google Scholar 

  53. 53. Mutic S, Dempsey JF, Bosch WR, et al. Multimodality image registration quality assurance for conformal three-dimensional treatment planning. Int J Radiat Oncol Biol Phys 2001; 51:255–260.

    CAS  PubMed  Google Scholar 

  54. de Boer HCJ, van Sornsen de Koste JR, Senan S, et al. Analysis and reduction of 3D systematic and random setup errors during the simulation and treatment of lung cancer patients with CT-based external beam radiotherapy dose planning. Int J Radiat Oncol Biol Phys 2001; 49:857–868.

    Google Scholar 

  55. 55. Valicenti RK, Sweet JW, Hauck WW, et al. Variation of clinical target volume definition in three-dimensional radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 1999; 44:931–935.

    CAS  PubMed  Google Scholar 

  56. 56. Chen L, Price RA Jr, Wang L, Li J, Qin L, McNeeley S, Ma C-M, Freedman GM, Pollack A. MRI-based treatment planning for radiotherapy: Dosimetry verification for prostate IMRT. Int J Radiat Oncol Biol Phys 2004; 60:636–647.

    Article  PubMed  Google Scholar 

  57. 57. Huber PE, Hawishorst H, Fuss M, et al. Transient enlargement of contrast uptake on MRI after linear accelerator (linac) stereotactic radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys 2001; 49:1339–1349.

    CAS  PubMed  Google Scholar 

  58. 58. Aoyama H, Shirato H, Nishioka T, et al. Magnetic resonance imaging system for three-dimensional conformal radiotherapy and its impact on gross tumor volume delineation of central nervous system tumors. Int J Radiat Oncol Biol Phys 2001; 50:821–827.

    CAS  PubMed  Google Scholar 

  59. 59. Kurhanewicz J, Dahiya R, Macdonald JM, et al. Citrate alterations in primary and metastatic human prostate adenocarcinoma–1H magnetic resonance spectroscopy and biochemical study. Magn Reson Med 1993; 29:149–157.

    Article  CAS  PubMed  Google Scholar 

  60. 60. Zaider M, Zelefsky MJ, Lee EK, et al. Treatment planning for prostate implants using magnetic-resonance spectroscopy imaging. Int J Radiat Oncol Biol Phys 2000; 47:1085–1096.

    CAS  PubMed  Google Scholar 

  61. 61. Menard C, Smith ICP, Somorjai RL, et al. Magnetic resonance spectroscopy of the malignant prostate gland after radiotherapy: a histopathologic study of diagnostic validity. Int J Radiat Oncol Biol Phys 2001; 50:317–323.

    Article  CAS  PubMed  Google Scholar 

  62. 62. DiBiase SJ, Hosseinzadeh K, Gullapalli RP, et al. Magnetic resonance spectroscopic imaging-guided brachytherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 2002; 52:429–438.

    PubMed  Google Scholar 

  63. 63. Gross MW, Weber WA, Feldmann HJ, et al. The value of F-18-fluorodeoxyglucose PET for the 3-D radiation treatment planning of malignant gliomas. Int J Radiat Oncol Biol Phys 1998; 41:989–995.

    CAS  PubMed  Google Scholar 

  64. 64. Nuutinen J, Sonninen P, Lehikoinen P, et al. Radiotherapy treatment planning and long-term followup with [11C]methionine PET in patients with low-grade astrocytoma. Int J Radiat Oncol Biol Phys 2000; 48:43–52.

    Article  CAS  PubMed  Google Scholar 

  65. 65. Van de Wiele C, Lahorte C, Oyer, W, Boerman O, Goethals I, Siegers G, Bierckx RA, Nuclear medicine imaging to predict response to radiotherapy: a review. Int J Radiat Oncol Biol Phys 2003; 55:5–15.

    Article  PubMed  Google Scholar 

  66. 66. Ellis RJ, Kim EY, Conant R, et al. Radioimmunoguided imaging of prostate cancer foci with histopathological correlation. Int J Radiat Oncol Biol Phys 2001; 49:1281–1286.

    CAS  PubMed  Google Scholar 

  67. 67. Epstein JJ, Walsh PC, Carmichael M, et al. Pathological and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA 1994; 271:368–374.

    Article  CAS  PubMed  Google Scholar 

  68. 68. Mackie TR, Kapatoes J, Ruchala K, Lu W, Wu C, Olivera G, Forrest L, Tome W, Welsh J, Jeraj R, Harari P, Reckwerdt P, Paliwal B, Ritter M, Keller H, Fowler J, Mehta M. Image-guidance for precise conformal radiotherapy. Int J Radiat Oncol Biol Phys 2003; 56:89–105.

    PubMed  Google Scholar 

  69. Mackie TR. CT in Radiotherapy and Tomotherapy. In: Goldman LW, Fowlkes JB, editors. Medical CT & Ultrasound: Current Technology and Applications. Madison, WI: 1995. Advanced Medical Publishing.

    Google Scholar 

  70. Aldridge JS: Tomographic patient registration and conformal avoidance tomotherapy. In Dept. of Medical Physics; 1999. Madison: University of Wisconsin.

    Google Scholar 

  71. 71. Hong TS, Tomé WA, Jaradat HA, Raisbeck BM, Ritter MA. Pelvic Nodal Dose Escalation with Prostate Hypofractionation Using Conformal Avoidance Defined (H-CAD) Intensity Modulated Radiation Therapy, Acta Oncologica 2006; 45:717–727.

    Article  PubMed  Google Scholar 

  72. 72. Pameijer FA, Hermans R, Mancuso AA, et al. Pre- and post-radiotherapy computed tomography in laryngeal cancer: Imaging-based prediction of local failure. Int J Radiat Oncol Biol Phys 1999; 45:359–366.

    CAS  PubMed  Google Scholar 

  73. Levitt SH, Khan FM. The rush to judgment: does the evidence support the enthusiasm over three-dimensional conformal radiation therapy and dose escalation in the treatment of prostate cancer? Int J Radiat Oncol Biol Phys 2001; 51:871–879.\.

    Google Scholar 

  74. 74. Yan D, Xu B, Lockman D, Kota K, Brabbins DS, Wong J, Martinez AA. The influence of interpatient and intrapatient rectum variation on external beam treatment of prostate cancer. Int J Radiat Oncol Biol Phys 2001; 51:1111–1119.

    CAS  PubMed  Google Scholar 

  75. 75. Teh, BS Woo SY, Butler EB, et al. Intensity modulated radiation therapy–A new promising technology in radiation oncology. The Oncologist 1999; 4:433–442.

    CAS  PubMed  Google Scholar 

  76. 76. Teh BS, Mai W-Y, Uhl BM, et al. Intensity-modulated radiation therapy (IMRT) for prostate cancer with the use of a rectal balloon for prostate immobilization: acute toxicity and dose–volume analysis. Int J Radiat Oncol Biol Phys 2001; 49:705–712.

    Article  CAS  PubMed  Google Scholar 

  77. 77. D’Amico AV, Manola J, Loffredo M, et al. A practical method to achieve prostate gland immobilization and target verification for daily treatment. Int J Radiat Oncol Biol Phys 2001; 51:1431–1436.

    PubMed  Google Scholar 

  78. 78. Patel RR, Orton NP, Tomé WA, Chappell R, Ritter MA, Rectal dose-sparing with a balloon catheter and ultrasound localization in conformal radiation therapy for prostate cancer. Radiotherapy and Oncology 2003; 67(3):285–294.

    Article  PubMed  Google Scholar 

  79. 79. Petereit D, Mehta M, Turski P, et al. Treatment of arteriovenous malformations with stereotactic radiosurgery employing both magnetic resonance angiography and standard angiography as a database. Int J Radiat Oncol Biol Phys 1993; 25:309–313.

    CAS  PubMed  Google Scholar 

  80. 80. Bednarz G, Downes B, Werner-Wasik M, et al. Combined stereotactic angiography and 3D time-of-flight magnetic resonance angiography in treatment planning for arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys 2000; 46:1149–1154.

    CAS  PubMed  Google Scholar 

  81. 81. Salter BJ, Fuss M, Vollmer DG, et al. The Talon removable head frame system for stereotactic radiosurgery/radiotherapy: measurement of the repositioning accuracy. Int J Radiat Oncol Biol Phys 2001; 51:555–562.

    CAS  PubMed  Google Scholar 

  82. 82. Ebert MA, Zavgorodni SF, Kendrick LA, et al. Multi-isocenter stereotactic radiosurgery: implications for target dose distributions of systematic and random localization errors. Int J Radiat Oncol Biol Phys 2001; 51:545–554.

    CAS  PubMed  Google Scholar 

  83. 83. Otto K, Fallone G. Frame slippage verification in stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 1998; 41:199–205.

    CAS  PubMed  Google Scholar 

  84. Allen BD, Bishop G, Welch G. Tracking: Beyond 15 min of thought. Course 11, SIGGRAPH 2001.

    Google Scholar 

  85. 85. Baroni G, Ferrigno G, Pedotti A, Implementation and application of real-time motion analysis based on passive markers. Med Biol Eng Comput 1998; 36:693–703.

    Article  CAS  PubMed  Google Scholar 

  86. Cardinale RM, Benedict SH, Bump EA, et al. Automated target positioning for extracranial radiosurgery. Int J Radiat Oncol Biol Phys 1999, S45:206.

    Google Scholar 

  87. 87. Kai J, Shiomi H, Sasama T, Sato Y. Optical high-precision three-dimensional position measurement system suitable for head motion tracking in frameless stereotactic radiosurgery. Comput Aided Surg 1998; 3:257–263.

    Article  CAS  PubMed  Google Scholar 

  88. 88. Kubo HD, Len PM, Minohara S, Mostafavi. Breathing-synchronized radiotherapy program at the University of California Davis Cancer Center. Med Phys 2000;27:346–353.

    Article  CAS  PubMed  Google Scholar 

  89. 89. Menke M, Hirschfeld F, Mack T, et al. Photogrammetric accuracy measurements of head holder systems used for fractionated radiotherapy. Int J Radiat Oncol Biol Phys 1994; 29:1147–1155.

    CAS  PubMed  Google Scholar 

  90. 90. Rogus RD, Stern RL, Kubo HD. Accuracy of a photogrammetry-based patient positioning and monitoring system for radiation therapy. Med Phys 1999; 26:721–728.

    Article  CAS  PubMed  Google Scholar 

  91. 91. Wang T, Solberg T, Medin P, Boone R. Infrared patient positioning for stereotactic radiosurgery of extracranial tumors. Comput Biol Med 2001; 31:101–111.

    Article  CAS  PubMed  Google Scholar 

  92. 92. Bova FJ, Buatti JM, Friedman WA, et al. The University of Florida frameless high-precision stereotactic radiotherapy system. Int J Radiat Oncol Biol Phys 1997; 38:875–882.

    Article  CAS  PubMed  Google Scholar 

  93. 93. Buatti JM, Bova FJ, Friedman WA, et al.: Preliminary experience with frameless stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 1998; 42:591–599.

    CAS  PubMed  Google Scholar 

  94. 94. Meeks SL, Bova FJ, Wagner TH, et al. Image localization for frameless stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 2000; 46:1291–1299.

    CAS  PubMed  Google Scholar 

  95. 95. Tomé WA, Meeks SL, Buatti JM, et al. A high-precision system for conformal intracranial radiotherapy. Int J Radiat Oncol Biol Phys 2000; 47:1137–1143.

    PubMed  Google Scholar 

  96. 96. Tomé WA, Meeks SL, McNutt TR, et al. Optically guided intensity modulated radiotherapy. Radiother Oncol 2001; 61:33–44.

    Article  PubMed  Google Scholar 

  97. 97. Ryken TC, Meeks SL, Pennington EC, et al. Initial experience with frameless stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 2001a; 51(4):1152–1158.

    CAS  PubMed  Google Scholar 

  98. 98. Bouchet LG, Meeks SL, Goodchild G, et al. Calibration of three-dimensional ultrasound images for image-guided radiation therapy. Phys Med Biol 2001;46:559–577.

    Article  CAS  PubMed  Google Scholar 

  99. 99. Bouchet LG, Meeks SL, Bova FJ, et al. 3D ultrasound image guidance for high precision extracranial radiosurgery and radiotherapy. Radiosurgery, 2002; 4:262–278.

    Article  Google Scholar 

  100. 100. Ryken TC, Meeks SL, Buatti JM, et al. Ultrasonic guidance for spinal extracranial radiosurgery: technique and application for metastatic spinal lesions. Neurosurgical Focus 2001b; 11(6):8.

    Article  Google Scholar 

  101. 101. Tomé WA, Meeks SL, Orton NP, et al. Commissioning and quality assurance of an optically guided 3D ultrasound target localization system for radiotherapy. Med Phys 2002; 29(8):1781–1788.

    Article  PubMed  Google Scholar 

  102. 102. Meeks SL, Buatti JM, Bouchet LG, et al. Ultrasound guided extracranial radiosurgery: technique and application. Int J Radiat Oncol Biol Phys 2003; 55(4):1092–1101.

    PubMed  Google Scholar 

  103. 103. Orton NP, Jaradat HA, Tomé WA. Clinical Assessment of three-dimensional ultrasound prostate localization for external beam radiotherapy. Med Phys 2006; 33:4710–4717.

    Article  PubMed  Google Scholar 

  104. 104. Chinnaiyan P, Tomé WA, Patel R, Chappell R, Ritter MA: Feasibility of Ultrasound-Guidance of Radiation Therapy in the Post-prostatectomy Setting. Technol Cancer Res Treat 2003; 2(5):455–458.

    PubMed  Google Scholar 

  105. 105. Uematsu M, Shioda A, Suda A, et al. Intrafractional tumor position stability during computed tomography (CT)-guided frameless stereotactic radiation therapy for lung or liver cancers with a fusion of CT and linear accelerator (FOCAL) unit. Int J Radiat Oncol Biol Phys 2000; 48:443–448.

    CAS  PubMed  Google Scholar 

  106. 106. Mackie TR, Holmes T, Swerdloff S, et al. Tomotherapy: A new concept for the delivery of dynamic conformal radiotherapy. Med Phys 1993; 20:1709–1719.

    Article  CAS  PubMed  Google Scholar 

  107. 107. Mackie TR. Tomotherapy. In Leavitt DD, Starkshall G, editors. XII International Conference on the Use of Computers in Radiation Therapy. Salt Lake City, UT, USA: Medical Physics Publishing, 1997, pp. 9–11.

    Google Scholar 

  108. 108. Mackie TR, Balog J, Ruchala K, et al. Tomotherapy. Sem Radiat Oncol 1999; 9:108–117.

    Article  CAS  Google Scholar 

  109. Olivera GH, Shepard DM, Ruchala K, et al. Tomotherapy. In Modern Technology of Radiation Oncology. Van Dyk J, editor. Madison: 1999. Medical Physics Publishing.

    Google Scholar 

  110. 110. Ruchala KJ, Olivera GH, Kapatoes JM, et al. Megavoltage CT image reconstruction during tomotherapy treatments. Phys Med Biol 2000; 45:3545–3562.

    Article  CAS  PubMed  Google Scholar 

  111. 111. Forrest LJ, Mackie TR, Ruchala K, Turek M, Kapatoes J, Jaradat H, Hui S, Balog J, Vail DM, Mehta MP. The utility of megavoltage computed tomography images from a helical tomotherapy system for setup verification purposes. Int J Rad Oncol Biol Phys 2004; 60:1639–1644.

    Google Scholar 

  112. 112. Carol M. A system for planning and rotational delivery of intensity-modulated fields. Int J Imaging Syst Tech 1995; 6:56–61.

    Article  Google Scholar 

  113. 113. Jaffray DA, Drake DG, Moreau M, et al. A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets. Int J Radiat Oncol Biol Phys 1999; 45:773–789.

    CAS  PubMed  Google Scholar 

  114. 114. Siewerdsen JH, Jaffray DA. Cone-beam computed tomography with a flat-panel imager: Magnitude and effects of X-ray scatter. Med Phys 2001; 28:220–231.

    Article  CAS  PubMed  Google Scholar 

  115. 115. Pouliot J, Bani-Hashemi A, Svatos M, Ghelmansarai F, Mitschke M, Aubin M, Xia P, Morin O, Bucci K, Roach III M. Low-dose megavoltage cone-beam CT for radiation therapy. Int J Radiat Oncol Bio Phys 2005; 61:552–560.

    Google Scholar 

  116. 116. Kamino Y, Takayama K, Kokubo M, Narita Y, Hirai E, Kawawda N, Mizowaki T, Nagata Y, Nishidai T, Hiraoka M. Development of a four-dimensional image-guided radiotherapy system with a gimbaled X-ray head. Int J Radiat Oncol Biol Phys 2006; 66:271–278.

    PubMed  Google Scholar 

  117. 117. Yan D, Wong J. Adaptive modification of treatment planning to minimize the deleterious effects of treatment setup errors. Int J Radiat Oncol Biol Phys 1997; 38:197–206.

    CAS  PubMed  Google Scholar 

  118. 118. van Herk M, Remeijer P, Rasch C, et al. The probability of correct target dosage: Dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 2000; 47:1121–1135.

    PubMed  Google Scholar 

  119. 119. Ardekani BA, Braun M, Hutton BF, et al. A fully automatic multimodality image registration algorithm. J Comput Assist Tomogr 1995; 19:615–623.

    Article  CAS  PubMed  Google Scholar 

  120. 120. Alexander ME, Somojai RL. The registration of MR images using multiscale robust methods. Mag Reson Imaging 1996; 14:453–468.

    Article  CAS  Google Scholar 

  121. 121. Zeidan OA, Langen KM, Meeks SL, Manon RR, Wagner TH, Willoughby TR, Jenkins DW, Kupelian PA. Evaluation of image-guidance protocols in the treatment of head and neck cancer. Int J Radiat Oncol Biol Phys 2007; 67:670–677.

    PubMed  Google Scholar 

  122. 122. Kupelian P, Ramsey C, Meeks S, Willoughby T, Forbes A, Wagner T, Langen K Serial megavoltage CT imaging during external beam radiotherapy for non-small-cell lung cancer: Observations on tumor regression during treatment. Int J Radiat Oncol Biol Phys 2005; 63:1024–1028.

    Article  PubMed  Google Scholar 

  123. 123. Siker M, Tomé W, Mehta M. Tumor volume changes on serial imaging with megavoltage CT for non-small-cell lung cancer during intensity-modulated radiotherapy: How reliable, consistent, and meaningful is the effect? Int J Radiat Oncol Biol Phys 2006; 66:135–141.

    PubMed  Google Scholar 

  124. 124. Blake A, Isard M. Active Contours. Berlin: Springer-Verlag; 1998.

    Google Scholar 

  125. 125. Lu W, Chen M-L, Olivera G, Ruchala K, Mackie TR. Fast free-form deformable registration via calculus of variations. Phys Med Biol 2004; 49:3067–3087.

    Article  PubMed  Google Scholar 

  126. 126. Wu C, Jeraj R, Olivera GH, Mackie TR. Re-optimization in adaptive radiotherapy. Phys Med Biol 2002; 47:3181–3195.

    Article  PubMed  Google Scholar 

  127. 127. Keller H, Ritter MA, and Mackie TR. Optimal stochastic correction strategies for rigid-body target motion. Int J Radiat Oncol Biol Phys 2003; 55:261–270.

    Article  PubMed  Google Scholar 

  128. 128. Keller H, Tomé WA, Ritter MA, Mackie TR: Design of adaptive treatment margins for non-neglible measurement uncertainty: application to ultrasound-guided prostate radiation therapy. Phys Med Biol 2004; 49:69–86.

    Article  CAS  PubMed  Google Scholar 

  129. 129. Yu CX, Jaffray DA, Wong JW. The effects of intra-fraction organ motion on the delivery of dynamic intensity modulation. Phys Med Biol 1998; 43:91–104.

    Article  CAS  PubMed  Google Scholar 

  130. 130. Yang JN, Mackie TR, Reckwerdt P, Deasy JO, Thomadsen BR. Investigation of tomotherapy beam delivery. Med Phys 1997; 24:425–436.

    Article  CAS  PubMed  Google Scholar 

  131. 131. Kissick MW, Boswell SW, Jeraj R, and Mackie TR. Confirmation, refinement, and extension of a study in intrafraction motion interplay with sliding jaw motion. Med Phys 2005; 32:2346–3250.

    Article  PubMed  Google Scholar 

  132. 132. Balter JM, Ten Haken RK, Lawrence TS et al. Uncertainties in CT-based radiation therapy treatment planning associated with patient breathing. Int J Radiat Oncol Biol Phys 1996; 36:167–174.

    CAS  PubMed  Google Scholar 

  133. 133. Samson MJ, van Sornsen de Koste JR, de Boer HCJ, et al. An analysis of anatomic landmark mobility and setup deviations in radiotherapy for lung cancer. Int J Radiat Oncol Biol Phys 1999; 43:827–832.

    Google Scholar 

  134. 134. Dawson LA, Litzenberg DW, Brock KK, et al. A comparison of ventilatory prostate movement in four treatment position. Int J Radiat Oncol Biol Phys 2000; 48:319–323.

    CAS  PubMed  Google Scholar 

  135. 135. Shirato H, Shimizu S, Kitamura K, et al. Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int J Radiat Oncol Biol Phys 2000; 48:435–442.

    Article  CAS  PubMed  Google Scholar 

  136. 136. Shimizu S, Shirato H, Aoyama H, et al. High-speed magnetic resonance imaging for four-dimensional treatment planning of conformal radiotherapy of moving body tumors. Int J Radiat Oncol Biol Phys 2000; 48:471–474.

    CAS  PubMed  Google Scholar 

  137. 137. Willoughby TR, Kupelian PA, Pouliot J, Shinobara K, Aubin M, Roach M 3rd, Skrumeda LL, Balter JM, Litzenberg DW, Hadley SW, Wei JT, Sandler HM. Int J Radiat Oncol Biol Phys 2006; 65:434–528.

    Google Scholar 

  138. 138. Oelfke U, Tücking T, Nill S, Seeber A, Hesse B, Huber P, Thilmann C. Linac-integrated kV-cone beam CT: Technical features and first applications. Med Dos 2006; 31:62–70.

    Article  Google Scholar 

  139. 139. Vedem SS, Keall PJ, Kini VR, Mohan R. Determining parameters for respiration-gated radiotherapy. Med Phys 2001; 28:2139–2146.

    Article  Google Scholar 

  140. 140. Kubo HD, Hill BC. Respiration gated radiotherapy treatment: A technical study. Phys Med Biol 1996; 41:83–91.

    Article  CAS  PubMed  Google Scholar 

  141. 141. Wong JW, Sharpe MB, Jaffray DA, et al. The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 1999; 44:911–919.

    CAS  PubMed  Google Scholar 

  142. 142. Balter JM, Brock KK, Litzenberg DW, et al. Daily targeting of intrahepatic tumors for radiotherapy. Int J Radiat Oncol Biol Phys 2002; 52:266–271.

    PubMed  Google Scholar 

  143. 143. Adler JR, Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL. The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg 1997; 69:124–128.

    Article  PubMed  Google Scholar 

  144. 144. Keall PJ, Kini VR, Vedam SS, Mohan R. Motion adaptive X-ray therapy: a feasibility study. Phys Med Biol 2001; 46:1–10.

    Article  CAS  PubMed  Google Scholar 

  145. Zhang T, Jeraj R, Keller H, Lu W, Olivera G, McNutt T, Mackie TR, Paliwal B. Treatment plan optimization incorporating respiratory motion. Med Phys 2004; 1576–1586.

    Google Scholar 

  146. Counsell RE, Longino MA, Pinchuk AN, Rampy MA, Weichert MA. Radioiodinated phospholipid ether analogs and methods of using the same. US Patent #6, 255, 519 (2001).

    Google Scholar 

  147. 147. Kapatoes JM. Olivera GH. Ruchala KJ. et al. A feasible method for clinical delivery verification and dose reconstruction in tomotherapy. Med Phys 2001a; 28:528–542.

    Article  CAS  PubMed  Google Scholar 

  148. 148. Kapatoes JM. Olivera GH. Balog JP, et al. On the accuracy and effectiveness of dose reconstruction for tomotherapy. Phys Med Biol 2001b; 46:943–966.

    Article  CAS  PubMed  Google Scholar 

  149. 149. Kapatoes JM, Olivera GH, Reckwerdt PJ, Fitchard EE, Schloesser EA, Mackie TR. Delivery verification in sequential and helical tomotherapy. Phys Med Biol 1999; 44:1815–1841.

    Article  CAS  PubMed  Google Scholar 

  150. 150. Yan, D, Jaffray D.A., Wong, J.W. A model to accumulate fractionated dose in a deforming organ. Int J Radiat Oncol Biol Phys 1999; 44:665–675.

    Article  CAS  PubMed  Google Scholar 

  151. 151. Pasma KL, Kroonwijk M, Quint S, Visser AG, Heijman BJ. Transit dosimetry with an electronic portal imaging device (EPID) for 115 prostate cancer patients. Int J Radiat Oncol Biol Phys 1999; 45:1297–1303.

    Article  CAS  PubMed  Google Scholar 

  152. 152. Partridge M, Ebert M, Hesse B–H. IMRT verification by three-dimensional dose reconstruction from portal beam measurements. Med Phys 2002; 29:1847–1858.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mackie, T.R., Tomé, W.A. (2008). Advanced Image-Guided External Beam Radiotherapy. In: Bentzen, S.M., Harari, P.M., Tomé, W.A., Mehta, M.P. (eds) Radiation Oncology Advances. Cancer Treatment and Research, vol 139. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36744-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-36744-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-36743-9

  • Online ISBN: 978-0-387-36744-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics