Skip to main content

Image-Based Modeling of Normal Tissue Complication Probability for Radiation Therapy

  • Chapter

Part of the book series: Cancer Treatment and Research ((CTAR,volume 139))

Radiation therapy dose distributions to eradicate tumor cells are typically constrained in extent or intensity to minimize the risk of injury to nearby critical normal tissues. With the widespread use of 3D image-based treatment planning systems, the question naturally arises how patient-specific anatomy and treatment differences affect outcome. It has long been known, that for many organs, variations in the fractional volume irradiated to high doses greatly alters the dose to achieve a given complication level (the “isoeffective dose”) [1]. Smaller irradiated fractional volumes often lead to a much lower risk of complication; this is often referred to as the “volume-effect” in the literature, but would be more correctly referred to as the “dose–volume” effect. Normal tissue complication probability (NTCP) modeling is simply the ongoing effort to understand the risk of normal tissue injury as a function of the 3D dose distribution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schultheiss TE, Orton CG, Peck RA. Models in radiotherapy: volume effects. Med Phys 1983; 10:410–415.

    Article  CAS  PubMed  Google Scholar 

  2. Ten Haken RK. Partial organ irradiation. Semin Radiat Oncol 2001; 11.

    Google Scholar 

  3. Deasy JO, Fowler JF. Radiobiology of IMRT Intensity Modulated Radiation Therapy: A Clinical Perspective, edited by A.J. Mundt, Roeske, J. (BC Decker, Hamilton, Ontario, 2005), pp. 53–74.

    Google Scholar 

  4. Moiseenko V, Deasy JO, Van Dyk J. Radiobiological modeling for treatment planning The Modern Technology of Radiation Oncology: A Compendium for Medical Physicists and Radiation Oncologists, edited by Jacob Van Dyk (Medical Physics Publishing, Madison, WI, 2005), Vol. 2, pp. 185–220.

    Google Scholar 

  5. Jackson A, Yorke E. NTCP and TCP for treatment planning, in A Practical Guide to Intensity Modulated Radiation Therapy. Madison: Medical Physics Publishing, 2003.

    Google Scholar 

  6. Yorke ED. Biological indices for evaluation and optimization of IMRT in Intensity-Modulated Radiation Therapy: The State of The Art, edited by J.R. Palta, Mackie, T.R. Madison: Medical Physics Publishing, 2003.

    Google Scholar 

  7. Deasy JO, Niemierko A, Herbert D, Yan D, Jackson A, Ten Haken RK, Langer M, Sapareto S. Methodological issues in radiation dose-volume outcome analyses: summary of a joint AAPM/NIH workshop. Med Phys 2002; 29:2109–2127.

    Article  PubMed  Google Scholar 

  8. Hopewell JW, Trott KR. Volume effects in radiobiology as applied to radiotherapy. Radiother Oncol 2000; 56:283–288.

    PubMed  Google Scholar 

  9. Burman C, Kutcher GJ, Emami B, Goitein M. Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 1991; 21:123–135.

    CAS  PubMed  Google Scholar 

  10. Jackson A., Ten Haken RK, Robertson JM, Kessler ML, Kutcher GJ, Lawrence TS. Analysis of clinical complication data for radiation hepatitis using a parallel architecture model. Int J Radiat Oncol Biol Phys 1995; 31:883–891.

    CAS  PubMed  Google Scholar 

  11. Jackson A, Kutcher GJ, Yorke ED. Probability of radiation-induced complications for normal tissues with parallel architecture subject to non-uniform irradiation. Med Phys 1993; 20:613–625.

    Article  CAS  PubMed  Google Scholar 

  12. Niemierko A, Goitein M. Modeling of normal tissue response to radiation: the critical volume model. Int J Radiat Oncol Biol Phys 1992; 25:135–145.

    Google Scholar 

  13. Kallman P, Agren A, Brahme A. Tumour and normal tissue responses to fractionated non-uniform dose delivery. Int J Radiat Biol 1992; 62:249–262.

    Article  CAS  PubMed  Google Scholar 

  14. Wolbarst AB. Optimization of radiation therapy II: the critical-voxel model. Int J Radiat Oncol Biol Phys 1984; 10:741–745.

    CAS  PubMed  Google Scholar 

  15. Chao KS, Bosch WR, Mutic S, Lewis JS, Dehdashti F, Mintun MA, Dempsey JF, Perez CA, Purdy JA, Welch MJ. A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 2001; 49:1171–1182.

    Article  CAS  PubMed  Google Scholar 

  16. Chao KS, Deasy JO, Markman J, Haynie J, Perez CA, Purdy JA, Low DA. A prospective study of salivary function sparing in patients with head-and-neck cancers receiving intensity-modulated or three-dimensional radiation therapy: initial results. Int J Radiat Oncol Biol Phys 2001; 49:907–916.

    Article  CAS  PubMed  Google Scholar 

  17. Blanco AI, Chao K.S.C, El Naqa I, Franklin GE, Zakarian K, Vicic M, Deasy J O. Dose-volume modeling of salivary function in patients with head and neck cancer receiving radiation therapy. Int J Radiat Oncol Biol Phys 2005; 62:1055–1069.

    Google Scholar 

  18. Dawson LA, Normolle D, Balter JM, McGinn CJ, Lawrence TS, Ten Haken RK. Analysis of radiation-induced liver disease using the Lyman NTCP model. Int J Radiat Oncol Biol Phys 2002; 53:810–821.

    PubMed  Google Scholar 

  19. Dawson LA, Ten Haken RK, Lawrence TS. Partial irradiation of the liver. Semin Radiat Oncol 2001; 11:240–246.

    Article  CAS  PubMed  Google Scholar 

  20. Bradley J, Deasy JO, Bentzen S, El Naqa I. Dosimetric correlates for acute esophagitis in patients treated with radiotherapy for lung carcinoma. Int J Radiat Oncol Biol Phys 2004; 58:1106–1113.

    PubMed  Google Scholar 

  21. Levegrun S, Ton L, Debus J. Partial irradiation of the brain. Semin Radiat Oncol 2001; 11:259–267.

    Article  CAS  PubMed  Google Scholar 

  22. Abratt RP, Morgan GW. Lung toxicity following chest irradiation in patients with lung cancer. Lung Cancer 2002; 35:103–109.

    Google Scholar 

  23. Mosteller F, Fienberg SE, Rourke RER. Beginning Statistics with Data Analysis. Reading, MA:Addison-Wesley; 1983.

    Google Scholar 

  24. de Crevoisier R, Tucker SL, Dong L, Mohan R, Cheung R, Cox JD, Kuban DA. Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 2005; 62:965–973.

    PubMed  Google Scholar 

  25. Hope AJ, Lindsay PE, El Naqa I, Bradley JD, Vivic M, Deasy JO. Clinical, dosimetric, and location-related factors to predict local control in non-small cell lung cancer. Int J Rad Onc Bio Phys 2005; S231.

    Google Scholar 

  26. Seppenwoolde Y, De Jaeger K, Boersma LJ, Belderbos JS, Lebesque JV. Regional differences in lung radiosensitivity after radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004; 60:91–98.

    Google Scholar 

  27. Cheng JC, Liu HS, Wu JK, Chung HW, Jan GJ. Inclusion of biological factors in parallel-architecture normal-tissue complication probability model for radiation-induced liver disease. Int J Radiat Oncol Biol Phys 2005; 62:1150–1156.

    PubMed  Google Scholar 

  28. Withers HR, Taylor JM, Maciejewski B. Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys 1988; 14:751–759.

    CAS  PubMed  Google Scholar 

  29. Fowler JF, Tome WA, Fenwick JD, Mehta MP. A challenge to traditional radiation oncology. Int J Radiat Oncol Biol Phys 2004; 60:1241–1256.

    Article  PubMed  Google Scholar 

  30. Kwa SL, Lebesque JV, Theuws JC, Marks LB, Munley MT, Bentel G, Oetzel D, Spahn U, Graham MV, Drzymala RE, Purdy JA, Lichter AS, Martel MK, Ten Haken RK. Radiation pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients. Int J Radiat Oncol Biol Phys 1998; 42:1–9.

    CAS  PubMed  Google Scholar 

  31. Marks LB. The impact of organ structure on radiation response. Int J Radiat Oncol Biol Phys 1996; 34:1165–1171.

    CAS  PubMed  Google Scholar 

  32. Hendry J, Thames HD. Correspondence: the tissue-rescuing unit. Br J Radiol 1986; 59: 628–630.

    Article  CAS  PubMed  Google Scholar 

  33. Powers BE, Thames HD, Gillette SM, Smith C, Beck ER, Gillette EL. Volume effects in the irradiated canine spinal cord: do they exist when the probability of injury is low? Radiother Oncol 1998; 46: 297–306.

    Article  CAS  PubMed  Google Scholar 

  34. Alber M, Belka C. A normal tissue dose response model of dynamic repair processes. Phys Med Biol 2006; 51: 153–172.

    Article  PubMed  Google Scholar 

  35. Bijl HP, van Luijk P, Coppes RP, Schippers JM, Konings AW, van der Kogel AJ. Dose-volume effects in the rat cervical spinal cord after proton irradiation. Int J Radiat Oncol Biol Phys 2002; 52: 205–211.

    PubMed  Google Scholar 

  36. Bijl HP, van Luijk P, Coppes RP, Schippers JM, Konings AW, van der Kogel AJ. Unexpected changes of rat cervical spinal cord tolerance caused by inhomogeneous dose distributions. Int J Radiat Oncol Biol Phys 2003; 57:274–281.

    PubMed  Google Scholar 

  37. Withers R. Migration and myelination. Int J Radiat Oncol Biol Phys 2003; 57: 9–10.

    PubMed  Google Scholar 

  38. Debus J, Hug EB, Liebsch NJ, O’Farrel D, Finkelstein D, Efird J, Munzenrider JE. Brainstem tolerance to conformal radiotherapy of skull base tumors. Int J Radiat Oncol Biol Phys 1997; 39:967–975.

    CAS  PubMed  Google Scholar 

  39. Jackson A, Skwarchuk MW, Zelefsky MJ, Cowen DM, Venkatraman ES, Levegrun S, Burman CM, Kutcher GJ, Fuks Z, Liebel SA, Ling CC. Late rectal bleeding after conformal radiotherapy of prostate cancer. II. Volume effects and dose-volume histograms. Int J Radiat Oncol Biol Phys 2001; 49: 685–698.

    CAS  PubMed  Google Scholar 

  40. Jackson A. Partial irradiation of the rectum. Semin Radiat Oncol 2001; 11:215–223.

    Article  CAS  PubMed  Google Scholar 

  41. Roeske JC, Bonta D, Mell LK, Lujan AE, Mundt AJ. A dosimetric analysis of acute gastrointestinal toxicity in women receiving intensity-modulated whole-pelvic radiation therapy. Radiother Oncol 2003; 69: 201–207.

    Article  PubMed  Google Scholar 

  42. Thames HD, Zhang M, Tucker SL, Liu HH, Dong L, Mohan R. Cluster models of dose-volume effects. Int J Radiat Oncol Biol Phys 2004; 59:1491–1504.

    PubMed  Google Scholar 

  43. Hauer-Jensen M, Wang J, Denham JW. Bowel injury: current and evolving management strategies. Semin Radiat Oncol 2003; 13: 357–371.

    PubMed  Google Scholar 

  44. Bentzen SM. Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer 2006; 6(9):702–713.

    Article  CAS  PubMed  Google Scholar 

  45. Wolbarst AB, Sternick ES, Curran BH, Dritschilo A. Optimized radiotherapy treatment planning using the complication probability factor (CPF). Int J Radiat Oncol Biol Phys 1980; 6: 723–728.

    CAS  PubMed  Google Scholar 

  46. Wolbarst AB, Chin LM, Svensson GK. Optimization of radiation therapy: integral-response of a model biological system. Int J Radiat Oncol Biol Phys 1982; 8:1761–1769.

    CAS  PubMed  Google Scholar 

  47. Lyman JT, Wolbarst AB. Optimization of radiation therapy, III: a method of assessing complication probabilities from dose-volume histograms. Int J Radiat Oncol Biol Phys 1987; 13: 103–109.

    CAS  PubMed  Google Scholar 

  48. Lyman JT, Wolbarst AB. Optimization of radiation therapy, IV: a dose-volume histogram reduction algorithm. Int J Radiat Oncol Biol Phys 1989; 17: 433–436.

    CAS  PubMed  Google Scholar 

  49. Kutcher GJ, Burman C, Brewster L, Goitein M, Mohan R. Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys 1991; 21:137–146.

    CAS  PubMed  Google Scholar 

  50. Kutcher GJ, Burman C. Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method. Int J Radiat Oncol Biol Phys 1989; 16:1623–1630.

    CAS  PubMed  Google Scholar 

  51. Goitein M, Niemierko A. Biologically based models for scoring treatment plans; 1988.

    Google Scholar 

  52. Emami B, Purdy JA, Manolis J, Barest G, Cheng E, Coia L, Doppke K, Galvin J, LoSasso T, Matthews J, et al. Three-dimensional treatment planning for lung cancer. Int J Radiat Oncol Biol Phys 1991; 21:217–227.

    CAS  PubMed  Google Scholar 

  53. Lyman JT. Complication probability as assessed from dose–volume histograms. Radiat Res Suppl 1985; 8:S13–S19.

    Article  CAS  PubMed  Google Scholar 

  54. Niemierko A. A generalized concept of Equivalent Uniform Dose (abstr.). 1999; 26: 1100.

    Google Scholar 

  55. Mohan R, Mageras GS, Baldwin B, Brewster LJ, Kutcher GJ, Leibel S, Burman CM, Ling CC, Fuks Z. Clinically relevant optimization of 3-D conformal treatments. Med Phys 1992; 19: 933–944.

    Article  CAS  PubMed  Google Scholar 

  56. Abramowitz M, Stegun I. Handbook of Mathematical Functions. New York: Dover Publications, Inc; 1970.

    Google Scholar 

  57. Deasy JO. Comments on the use of the Lyman-Kutcher-Burman model to describe tissue response to nonuniform irradiation. Int J Radiat Oncol Biol Phys 2000; 47: 1458–1460.

    CAS  PubMed  Google Scholar 

  58. Yorke ED, Kutcher GJ, Jackson A, Ling CC. Probability of radiation-induced complications in normal tissues with parallel architecture under conditions of uniform whole or partial organ irradiation. Radiother Oncol 1993; 26: 226–237.

    Article  CAS  PubMed  Google Scholar 

  59. Yorke ED, Jackson A, Rosenzweig KE, Merrick SA, Gabrys D, Venkatraman ES, Burman CM, Leibel SA, Ling CC. Dose–volume factors contributing to the incidence of radiation pneumonitis in non-small-cell lung cancer patients treated with three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys 2002; 54:329–339.

    Article  PubMed  Google Scholar 

  60. Tucker SL, Cheung R, Dong L, Liu HH, Thames HD, Huang EH, Kuban D, Mohan R. Dose-volume response analyses of late rectal bleeding after radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2004; 59:353–365.

    PubMed  Google Scholar 

  61. Willner J., Jost A, Baier K, Flentje M. A little to a lot or a lot to a little? An analysis of pneumonitis risk from dose-volume histogram parameters of the lung in patients with lung cancer treated with 3-D conformal radiotherapy. Strahlenther Onkol 2003; 179:548–556.

    Article  PubMed  Google Scholar 

  62. Yorke ED, Jackson A, Rosenzweig KE, Braban L, Leibel SA, Ling CC. Correlation of dosimetric factors and radiation pneumonitis for non-small-cell lung cancer patients in a recently completed dose escalation study. Int J Radiat Oncol Biol Phys 2005; 63:672–682.

    PubMed  Google Scholar 

  63. Deasy JO, Blanco AI, Clark VH. CERR: a computational environment for radiotherapy research. Med Phys 2003; 30:979–985.

    Article  PubMed  Google Scholar 

  64. Bradley J, Deasy JO, El Naqa I, Bentzen S. Dosimetric correlates for acute esophagitis in patients treated with radiotherapy for lung carcinoma. Int J Radiat Oncol Biol Phys 2004; 58: 1106.

    PubMed  Google Scholar 

  65. Chao KSC, Ozyigit G, Blanco AI, Thorstad WL, Deasy JO, Haughey BH, Spector GJ, Sessions DG. Intensity-modulated radiation therapy for oropharyngeal carcinoma: impact of tumor volume. Int J Radiat Oncol Biol Phys 2004; 59: 43.

    PubMed  Google Scholar 

  66. El Naqa I, Lindsay PE, Wickerhauser MV, Vicic M, Zakarian K, Deasy JO, Kawrakow I, Fippel M, Siebers JV, Kauffmann N. A comparison of Monte Carlo dose calculation denoising techniques. Phys Med Biol 2005; 50: 909.

    PubMed  Google Scholar 

  67. Gladwish A, Kron T, McNiven A, Bauman G, Van Dyk J. Asymmetric fan beams (AFB) for improvement of the craniocaudal dose distribution in helical tomotherapy delivery. Med Phys 2004; 31: 2443.

    Article  PubMed  Google Scholar 

  68. Hamilton CS, Ebert MA. Volumetric uncertainty in radiotherapy. Clin Oncol 2005; 17: 456.

    Article  CAS  Google Scholar 

  69. Wieslander E Knöo?s T. A virtual-accelerator-based verification of a Monte Carlo dose calculation algorithm for electron beam treatment planning in homogeneous phantoms. Phys Med Biol 2006; 51: 1533.

    Google Scholar 

  70. Zhang M, Moiseenko V, Liu M, Craig T. Internal fiducial markers can assist dose escalation in treatment of prostate cancer: result of organ motion simulations. Phys Med Biol 2006; 51: 269.

    Article  CAS  PubMed  Google Scholar 

  71. Levegrun S. Jackson A, Zelefsky MJ, Skwarchuk MW, Venkatraman ES, Schlegel W, Fuks Z, Leibel SA, Ling CC. Fitting tumor control probability models to biopsy outcome after three-dimensional conformal radiation therapy of prostate cancer: pitfalls in deducing radiobiologic parameters for tumors from clinical data. Int J Radiat Oncol Biol Phys 2001; 51:1064–1080.

    Article  CAS  PubMed  Google Scholar 

  72. Marks LB. Dosimetric predictors of radiation-induced lung injury. Int J Radiat Oncol Biol Phys 2002; 54:313–316.

    Article  PubMed  Google Scholar 

  73. Hope AJ, Lindsay PE, El Naqa I, Alaly JR, Vicic M, Bradley JD, Deasy JO. Modeling radiation pneumonitis risk with clinical, dosimetric, and spatial parameters. Int J Radiat Oncol Biol Phys 2006; 65: 112–124.

    PubMed  Google Scholar 

  74. Kennedy R, Lee Y, Van Roy B, Reed CD, Lippman RP. Solving data mining problems through pattern recognition. Prentice Hall; 1998.

    Google Scholar 

  75. Dawson LA, Biersack M, Lockwood G, Eisbruch A, Lawrence TS, Ten Haken RK. Use of principal component analysis to evaluate the partial organ tolerance of normal tissues to radiation. Int J Radiat Oncol Biol Phys 2005; 62.

    Google Scholar 

  76. Hosmer DW, Lemeshow S. Applied Logistic Regression. 2nd ed. John Wiley; 2000.

    Google Scholar 

  77. Vittinghoff E. Regression methods in biostatistics: linear, logistic, survival, and repeated measures models. New York: Springer; 2005.

    Google Scholar 

  78. Haykin S. Neural Networks: A Comprehensive Foundation. 2nd ed. Prentice Hall; 1999.

    Google Scholar 

  79. Munley MT, Lo JY, Sibley GS, Bentel GC, Anscher MS, Marks LB. A neural network to predict symptomatic lung injury. Phys Med Biol 1999; 44:2241–2249.

    Article  CAS  PubMed  Google Scholar 

  80. Su M, Miftena M, Whiddon C, Sun X, Light K, Marks L. An artificial neural network for predicting the incidence of radiation pneumonitis. Med Phys 2005; 32:318–325.

    Article  PubMed  Google Scholar 

  81. El Naqa I Bradley J, Deasy J. Machine learning methods for radiobiological outcome modeling. in AAPM Symposium Proceedings, edited by M. Mehta, B. Paliwal, and S. Bentzen (Medical Physics Publishing, 2005), Vol. 14.

    Google Scholar 

  82. Gulliford SL, Webb S, Rowbottom CG, Corne DW, Dearnaley DP. Use of artificial neural networks to predict biological outcomes for patients receiving radical radiotherapy of the prostate. Radiother Oncol 2004; 71: 3–12.

    Article  PubMed  Google Scholar 

  83. Lennernas B, Sandberg D, Albertsson P, Silen A, Isacsson U. The effectiveness of artificial neural networks in evaluating treatment plans for patients requiring external beam radiotherapy. Oncol Rep 2004; 12:1065–1070.

    PubMed  Google Scholar 

  84. Hastie T, Tibshirani R, Friedman JH. The Elements of Statistical Learning: Data Mining, Inference, and Prediction: with 200 Full-Color Illustrations. New York: Springer; 2001.

    Google Scholar 

  85. Burnham KP, Anderson DR. Model Selection and multimodal inference: a practical information-theoretic approach. 2nd ed. New York: Springer; 2002.

    Google Scholar 

  86. Efron B, Tibshirani R. An introduction to the bootstrap. New York: Chapman & Hall; 1993.

    Google Scholar 

  87. Rancati T, Fiorino C, Gagliardi G, Cattaneo GM, Sanguineti G, Borca VC, Cozzarini C, Fellin G, Foppiano F, Girelli G, Menegotti L, Piazzolla A, Vavassori V, Valdagni R. Fitting late rectal bleeding data using different NTCP models: results from an Italian multi-centric study (AIROPROS0101). Radiother Oncol 2004; 73:21–32.

    Article  CAS  PubMed  Google Scholar 

  88. Dale E, Olsen DR, Fossa SD. Normal tissue complication probabilities correlated with late effects in the rectum after prostate conformal radiotherapy. Int J Radiat Oncol Biol Phys 1999; 43:385–391.

    CAS  PubMed  Google Scholar 

  89. Hartford AC, Niemierko A, Adams JA, Urie MM, Shipley WU. Conformal irradiation of the prostate: estimating long-term rectal bleeding risk using dose-volume histograms. Int J Radiat Oncol Biol Phys 1996; 36:721–730.

    CAS  PubMed  Google Scholar 

  90. Fiorino C, Foppiano F, Franzone P, Broggi S, Castellone P, Marcenaro M, Calandrino R, Sanguineti G. Rectal and bladder motion during conformal radiotherapy after radical prostatectomy. Radiother Oncol 2005; 74:187–195.

    Article  PubMed  Google Scholar 

  91. Abraatt RP. Clinical dose-volume histogram and lung toxicity after irradiation for lung cancer. Int J Radiat Oncol Biol Phys 2000; 47:1461.

    CAS  PubMed  Google Scholar 

  92. Armstrong JG. Three-dimensional conformal radiotherapy. Precision treatment of lung cancer. Chest Surg Clin N Am 1994; 4.

    Google Scholar 

  93. Kwa SL, Theuws JC, Wagenaar A, Damen EM, Boersma LJ, Baas P, Muller SH, Lebesque JV. Evaluation of two dose-volume histogram reduction models for the prediction of radiation pneumonitis. Radiother Oncol 1998; 48:61–69.

    Article  CAS  PubMed  Google Scholar 

  94. Hernando ML, Marks LB, Bentel GC, Zhou SM, Hollis D, Das SK, Fan M, Munley MT, Shafman TD, Anscher MS, Lind PA. Radiation-induced pulmonary toxicity: a dose-volume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys 2001; 51:650–659.

    CAS  PubMed  Google Scholar 

  95. Fu XL, Huang H, Bentel G, Clough R, Jirtle RL, Kong FM, Marks LB, Anscher MS. Predicting the risk of symptomatic radiation-induced lung injury using both the physical and biologic parameters V(30) and transforming growth factor beta. Int J Radiat Oncol Biol Phys 2001; 50.

    Google Scholar 

  96. Tsujino K, Hirota S, Endo M, Obayashi K, Kotani Y, Satouchi M, Kado T, Takada Y. Predictive value of dose-volume histogram parameters for predicting radiation pneumonitis after concurrent chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys 2003; 55:110–115.

    PubMed  Google Scholar 

  97. Koga K, Kusumoto S, Watanabe K, Nishikawa K, Harada K, Ebihara H. Age factor relevant to the development of radiation pneumonitis in radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys 1988; 14:367–371.

    Google Scholar 

  98. Schild SE, Stella PJ, Geyer SM, Bonner JA, McGinnis WL, Mailliard JA, Brindle J, Jatoi A, Jett JR. The outcome of combined-modality therapy for stage III non-small-cell lung cancer in the elderly. J Clin Oncol 2003; 21:99–109.

    Article  CAS  Google Scholar 

  99. Claude L, Perol D, Ginestet C, Falchero L, Arpin D, Vincent M, Martel I, Hominal S, Cordier JR, Carrie C. A prospective study on radiation pneumonitis following conformal radiation therapy in non-small-cell lung cancer: clinical and dosimetric factors analysis. Radiother Oncol 2004; 71:175–181.

    Article  PubMed  Google Scholar 

  100. Monson JM, Stark P, Reilly JJ, Sugarbaker DJ, Strauss GM, Swanson SJ, Decamp MM, Mentzer SJ, Baldini EH. Clinical radiation pneumonitis and radiographic changes after thoracic radiation therapy for lung carcinoma. Cancer 1998; 82:842–850.

    Article  CAS  PubMed  Google Scholar 

  101. Abratt RP, Willcox PA. The effect of irradiation on lung function and perfusion in patients with lung cancer. Int J Radiat Oncol Biol Phys 1995; 31.

    Google Scholar 

  102. Marks LB, Munley MT, Spencer DP, Sherouse GW, Bentel GC, Hoppenworth J, Chew M, Jaszczak RJ, Coleman RE, Prosnitz LR. Quantification of radiation-induced regional lung injury with perfusion imaging. Int J Radiat Oncol Biol Phys 1997; 38:399–409.

    Article  CAS  PubMed  Google Scholar 

  103. Robnett TJ, Machtay M, Vines EF, McKenna MG, Algazy KM, McKenna WG. Factors predicting severe radiation pneumonitis in patients receiving definitive chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys 2000; 48:89–94.

    Article  CAS  PubMed  Google Scholar 

  104. Brooks BJ Jr, Seifter EJ, Walsh TE, Lichter AS, Bunn PA, Zabell A, Johnston-Early A, Edison M, Makuch RW, Cohen MH, et al. Pulmonary toxicity with combined modality therapy for limited stage small-cell lung cancer. J Clin Oncol 1986; 4.

    Google Scholar 

  105. Rancati T, Ceresoli GL, Gagliardi G, Schipani S, Cattaneo GM. Factors predicting radiation pneumonitis in lung cancer patients: a retrospective study. Radiother Oncol 2003; 67:275–283.

    Article  PubMed  Google Scholar 

  106. Byhardt RW, Scott C, Sause WT, Emami B, Komaki R, Fisher B, Lee JS, Lawton C. Response, toxicity, failure patterns, and survival in five Radiation Therapy Oncology Group (RTOG) trials of sequential and/or concurrent chemotherapy and radiotherapy for locally advanced non-small-cell carcinoma of the lung. Int J Radiat Oncol Biol Phys 1998; 42:469–478.

    CAS  PubMed  Google Scholar 

  107. Fernando IN, Powles TJ, Ashley S, Grafton D, Harmer CL, Ford HT. An acute toxicity study on the effects of synchronous chemotherapy and radiotherapy in early stage breast cancer after conservative surgery. Clin Oncol (R Coll Radiol) 1996; 8:234–238.

    CAS  Google Scholar 

  108. Segawa Y, Takigawa N, Kataoka M, Takata I, Fujimoto N, Ueoka H. Risk factors for development of radiation pneumonitis following radiation therapy with or without chemotherapy for lung cancer. Int J Radiat Oncol Biol Phys 1997; 39.

    Google Scholar 

  109. Taghian AG, Assaad SI, Niemierko A, Kuter I, Younger J, Schoenthaler R, Roche M, Powell SN. Risk of pneumonitis in breast cancer patients treated with radiation therapy and combination chemotherapy with paclitaxel. J Natl Cancer Inst 2001; 93.

    Google Scholar 

  110. Miller KL, Shafman TD, Marks LB. A practical approach to pulmonary risk assessment in the radiotherapy of lung cancer. Semin Radiat Oncol 2004; 14:298–307.

    Article  PubMed  Google Scholar 

  111. Liao ZX, Travis EL, Tucker SL. “Damage and morbidity from pneumonitis after irradiation of partial volumes of mouse lung”. Int J Radiat Oncol Biol Phys 1995; 32.

    Google Scholar 

  112. Travis EL, Liao ZX, Tucker SL. Spatial heterogeneity of the volume effect for radiation pneumonitis in mouse lung. Int J Radiat Oncol Biol Phys 1997; 38.

    Google Scholar 

  113. Khan MA, Van Dyk J, Yeung IW, and Hill RP. Partial volume rat lung irradiation; assessment of early DNA damage in different lung regions and effect of radical scavengers. Radiother Oncol 2003; 66:95–102.

    Article  PubMed  Google Scholar 

  114. Bradley J, Deasy J, El Naqa I, Lindsay P, Hope A, Bosch W, Matthews J, Sause W, Graham M. Predictors of Lung Toxicity from the RTOG 9311 Radiation Dose Escalation Trial: GTV Position is Important (abstr.). Int J Rad Onc Bio Phys 63:S40.

    Google Scholar 

  115. Amosson CM, Teh BS, Van TJ, Uy N, Huang E, Mai WY, Frolov A, Woo SY, Chiu JK, Carpenter LS, Lu HH, Grant, 3rd HH, Butler EB. Dosimetric predictors of xerostomia for head-and-neck cancer patients treated with the smart (simultaneous modulated accelerated radiation therapy) boost technique. Int J Radiat Oncol Biol Phys 2003; 56:136–144.

    Google Scholar 

  116. Dawes C. Circadian rhythms in human salivary flow rate and composition. J Physiol 1972; 220:529–545.

    Article  Google Scholar 

  117. Brizel DM, Light K, Zhou SM, Marks LB. Conformal radiation therapy treatment planning reduces the dose to the optic structures for patients with tumors of the paranasal sinuses. Radiother Oncol 1999; 51:215–218.

    Article  CAS  PubMed  Google Scholar 

  118. Johnson JT, Ferretti GA, Nethery WJ, Valdez IH, Fox PC, Ng D, Muscoplat CC, Gallagher SC. Oral pilocarpine for post-irradiation xerostomia in patients with head and neck cancer. N Engl J Med 1993; 329:390–395.

    Article  CAS  PubMed  Google Scholar 

  119. Chao KS. Protection of salivary function by intensity-modulated radiation therapy in patients with head and neck cancer. Semin Radiat Oncol 2002; 12:20–25.

    Article  PubMed  Google Scholar 

  120. Eisbruch A, Ten Haken RK, Kim HM, Marsh LH, Ship JA. Dose, volume, and function relationships in parotid salivary glands following conformal and intensity-modulated irradiation of head and neck cancer. Int J Radiat Oncol Biol Phys 1999; 45:577–587.

    CAS  PubMed  Google Scholar 

  121. Roesink JM, Moerland MA, Battermann JJ, Hordijk GJ, Terhaard CH. Quantitative dose-volume response analysis of changes in parotid gland function after radiotherapy in the head-and-neck region. Int J Radiat Oncol Biol Phys 2001; 51:938–946.

    CAS  PubMed  Google Scholar 

  122. Johnson TD, Taylor JM, Ten Haken RK, Eisbruch A. A Bayesian mixture model relating dose to critical organs and functional complication in 3D conformal radiation therapy. Biostatistics 2005; 6:615–632.

    PubMed  Google Scholar 

  123. Scrimger RA, Stavrev P, Parliament MB, Field C, Thompson H, Stavreva N, Fallone BG. Phenomenologic model describing flow reduction for parotid gland irradiation with intensity-modulated radiotherapy: evidence of significant recovery effect. Int J Radiat Oncol Biol Phys 2004; 60:178–185.

    PubMed  Google Scholar 

  124. Huang EH, Pollack A, Levy L, Starkschall G, Dong L, Rosen I, Kuban DA. Late rectal toxicity: dose-volume effects of conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2002; 54:1314–1321.

    PubMed  Google Scholar 

  125. Deasy JO. Multiple local minima in radiotherapy optimization problems with dose-volume constraints. Med Phys 1997; 24:1157–1161.

    Article  CAS  PubMed  Google Scholar 

  126. Choi B, Deasy JO. The generalized equivalent uniform dose function as a basis for intensity-modulated treatment planning. Phys Med Biol 2002; 47:3579–3589.

    Article  PubMed  Google Scholar 

  127. Romeijn HE, Ahuja RK, Dempsey JF, Kumar A, Li JG. A novel linear programming approach to fluence map optimization for intensity modulated radiation therapy treatment planning. Phys Med Biol 2003; 48:3521–3542.

    Article  PubMed  Google Scholar 

  128. Schilstra C, Meertens H. Calculation of the uncertainty in complication probability for various dose-response models, applied to the parotid gland. Int J Radiat Oncol Biol Phys 2001; 50:147–158.

    CAS  PubMed  Google Scholar 

  129. Deasy JO, Chao KS, Markman J. Uncertainties in model-based outcome predictions for treatment planning. Int J Radiat Oncol Biol Phys 2001; 51:1389–1399.

    CAS  PubMed  Google Scholar 

  130. Deasy JO, Fowler JF. The radiobiology of intensity modulated radiation therapy. in Intensity Modulated Radiation Therapy: A Clinical Perspective, edited by A.J. Mundt, Roeske, J.C. BC Decker: Hamilton, 2005.

    Google Scholar 

  131. Thames HD, Hendry JH. Fractionation in Radiotherapy. New York: Taylor & Francis; 1987.

    Google Scholar 

  132. Lyman JT. Normal tissue complication probabilities: variable dose per fraction. Int J Radiat Oncol Biol Phys 1992; 22:247–250.

    CAS  PubMed  Google Scholar 

  133. Schultheiss T. The controversies and pitfalls in modeling normal tissue radiation injury/damage. Semin Radiat Oncol 2001; 11:210–214.

    Article  CAS  PubMed  Google Scholar 

  134. Bradley J, Graham MV, Winter K, Purdy JA, Komaki R, Roa WH, Ryu JK, Bosch W, Emami B. Toxicity and outcome results of RTOG 9311: a phase I–II dose-escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small-cell lung carcinoma. Int J Radiat Oncol Biol Phys 2005; 61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Deasy, J.O., Naqa, I.E. (2008). Image-Based Modeling of Normal Tissue Complication Probability for Radiation Therapy. In: Bentzen, S.M., Harari, P.M., Tomé, W.A., Mehta, M.P. (eds) Radiation Oncology Advances. Cancer Treatment and Research, vol 139. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36744-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-36744-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-36743-9

  • Online ISBN: 978-0-387-36744-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics