Univariate Algorithms for Solving Global Optimization Problems with Multiextremal Non-differentiable Constraints

  • Yaroslav D. Sergeyev
  • Falah M. H. Khalaf
  • Dmitri E. Kvasov
Part of the Optimization and Its Applications book series (SOIA, volume 4)


In this chapter, Lipschitz univariate constrained global optimization problems where both the objective function and constraints can be multiextremal and non-differentiable are considered. The constrained problem is reduced to a discontinuous unconstrained problem by the index scheme without introducing additional parameters or variables. It is shown that the index approach proposed by R.G. Strongin for solving these problems in the framework of stochastic information algorithms can be successfully extended to geometric algorithms constructing non-differentiable discontinuous minorants for the reduced problem. A new geometric method using adaptive estimates of Lipschitz constants is described and its convergence conditions are established. Numerical experiments including comparison of the new algorithm with methods using penalty approach are presented.

Key words

Global optimization multiextremal constraints geometric algorithms index scheme 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ber96]
    Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific, Belmont, MA (1996)Google Scholar
  2. [Ber99]
    Bertsekas, D.P.: Nonlinear Programming. 2nd ed. Athena Scientific, Belmont, MA (1999)zbMATHGoogle Scholar
  3. [Bro58]
    Brooks, S.H.: Discussion of random methods for locating surface maxima. Operation Research, 6, 244–251 (1958)MathSciNetCrossRefGoogle Scholar
  4. [BS02]
    Barkalov, K.A., Strongin, R.G.: A global optimization technique with an adaptive order of checking for constraints. Comput. Math. Math. Phys., 42, 1289–1300 (2002)MathSciNetGoogle Scholar
  5. [CZ99]
    Calvin, J., Žilinskas, A.: On the convergence of the P-algorithm for one-dimensional global optimization of smooth functions. J. Optim. Theory Appl., 102, 479–495 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [DGMS95]
    Daponte, P., Grimaldi, D., Molinaro, A., Sergeyev, Ya.D.: An algorithm for finding the zero-crossing of time signals with Lipschitzean derivatives. Measurement, 16, 37–49 (1995)CrossRefGoogle Scholar
  7. [DGMS96]
    Daponte, P., Grimaldi, D., Molinaro, A., Sergeyev, Ya.D.: Fast detection of the first zero-crossing in a measurement signal set. Measurement, 19, 29–39 (1996)CrossRefGoogle Scholar
  8. [FP96]
    Floudas, C.A., Pardalos, P.M.: State of the Art in Global Optimization. Kluwer Academic Publishers, Dordrecht (1996)zbMATHGoogle Scholar
  9. [FSP02]
    Famularo, D., Sergeyev, Ya.D., Pugliese, P.: Test problems for Lipschitz univariate global optimization with multiextremal constraints. In: Dzemyda, G., Šaltenis, V., Žilinskas, A. (eds) Stochastic and Global Optimization. Kluwer Academic Publishers, Dordrecht, 93–110 (2002)CrossRefGoogle Scholar
  10. [HJ95]
    Hansen, P., Jaumard, B.: Lipshitz optimization. In: Horst, R., Pardalos, P.M. (eds) Handbook of Global Optimization. Kluwer Academic Publishers, Dordrecht, 407–493 (1995)Google Scholar
  11. [HP95]
    Horst, R., Pardalos, P.M.: Handbook of Global Optimization. Kluwer Academic Publishers, Dordrecht (1995)zbMATHGoogle Scholar
  12. [HT96]
    Horst, R., Tuy, H.: Global Optimization — Deterministic Approaches. 3rd ed. Springer-Verlag, Berlin (1996)zbMATHGoogle Scholar
  13. [Lam99]
    Lamar, B.W.: A method for converting a class of univariate functions into d.c. functions. J. Global Optim., 15, 55–71 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  14. [LS95]
    Locatelli, M., Schoen, F.: An adaptive stochastic global optimisation algorithm for one-dimensional functions. Ann. Oper. Res., 58, 263–278 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  15. [Mla92]
    Mladineo, R.: Convergence rates of a global optimization algorithm. Math. Program., 54, 223–232 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  16. [MSB96]
    MacLagan, D., Sturge, T., Baritompa, W.P.: Equivalent methods for global optimization. In: Floudas, C.A., Pardalos, P.M. (eds) State of the Art in Global Optimization. Kluwer Academic Publishers, Dordrecht, 201–212 (1996)Google Scholar
  17. [NW99]
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research, Springer Verlag (1999)Google Scholar
  18. [Pij72]
    Pijavskii, S.A.: An algorithm for finding the absolute extremum of a function. USSR Comput. Math. Math. Phys., 12 57–67 (1972)CrossRefMathSciNetGoogle Scholar
  19. [Pin96]
    Pintér, J.D.: Global Optimization in Action. Kluwer Academic Publisher, Dordrecth (1996)zbMATHGoogle Scholar
  20. [PKS87]
    Patwardhan, A.A., Karim, M.N., Shah, R.: Controller tuning by a least-squares method. AIChE J., 33, 1735–1737 (1987)CrossRefGoogle Scholar
  21. [PR90]
    Pardalos, P.M., Rosen, J.B. (eds): Computational Methods in Global Optimization. Annals of Operations Research, 25 (1990)Google Scholar
  22. [RWPD85]
    Ralston, P.A.S., Watson, K.R., Patwardhan, A.A., Deshpande, P.B.: A computer algorithm for optimized control. Industrial and Engineering Chemistry, Product Research and Development, 24, 1132 (1985)Google Scholar
  23. [SDGM99]
    Sergeyev, Ya.D., Daponte, P., Grimaldi, D., Molinaro, A.: Two methods for solving optimization problems arising in electronic measurements and electrical engineering. SIAM J. Optim., 10, 1–21 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  24. [Ser98]
    Sergeyev, Ya.D.: Global one-dimensional optimization using smooth auxiliary functions. Math. Program., 81, 127–146 (1998)MathSciNetGoogle Scholar
  25. [Ser99]
    Sergeyev, Ya.D.: On convergence of “Divide the Best” global optimization algorithms. Optimization, 44, 303–325 (1999)MathSciNetGoogle Scholar
  26. [SFP01]
    Sergeyev, Ya.D., Famularo, D., Pugliese, P.: Index branch-and-bound algorithm for Lipschitz univariate global optimization with multiextremal constraints. J. Global Optim., 21, 317–341 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  27. [SG01]
    Sergeyev, Ya.D., Grishagin, V.A.: Parallel asynchronous global search and the nested optimization scheme. J. Comput. Anal. Appl., 3(2), 123–145 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  28. [SM86]
    Strongin, R.G., Markin, D.L.: Minimization of multiextremal functions with nonconvex constraints. Cybernetics, 22, 486–493 (1986)zbMATHCrossRefGoogle Scholar
  29. [SM95]
    Sergeyev, Ya.D., Markin, D.L.: An algorithm for solving global optimization problems with nonlinear constraints. J. Global Optim., 7, 407–419 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  30. [SS00]
    Strongin, R.G., Sergeyev, Ya.D.: Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)zbMATHGoogle Scholar
  31. [Str78]
    Strongin, R.G.: Numerical Methods on Multiextremal Problems. Nauka, Moscow (1978) in RussianGoogle Scholar
  32. [Str84]
    Strongin, R.G.: Numerical methods for multiextremal nonlinear programming problems with nonconvex constraints. In: Demyanov, V.F., Pallaschke, D. (eds) Lecture Notes in Economics and Mathematical Systems 255, Proceedings 1984. Springer-Verlag. IIASA, Laxenburg/Austria, 278–282 (1984)Google Scholar
  33. [TZ89]
    Törn, A., Žilinskas, A.: Global Optimization. Springer-Verlag, Lecture Notes in Computer Science, 350 (1989)Google Scholar
  34. [WC96]
    Wang, X., Chang, T.S.: An improved univariate global optimization algorithm with improved linear bounding functions. J. Global Optim., 8, 393–411 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  35. [Zhi91]
    Zhigljavsky, A.A.: Theory of Global Random Search. Kluwer Academic Publishers, Dordrecht (1991)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yaroslav D. Sergeyev
    • 1
    • 2
  • Falah M. H. Khalaf
    • 3
  • Dmitri E. Kvasov
    • 2
    • 4
  1. 1.DEISUniversity of CalabriaRende (CS)Italy
  2. 2.Software DepartmentN.I. Lobatchevsky State UniversityNizhni NovgorodRussia
  3. 3.Department of MathematicsUniversity of CalabriaItaly
  4. 4.Department of StatisticsUniversity of Rome “La Sapienza”Italy

Personalised recommendations