Towards Optimal Techniques for Solving Global Optimization Problems: Symmetry-Based Approach

  • Christodoulos A. Floudas
  • Vladik Kreinovich
Part of the Optimization and Its Applications book series (SOIA, volume 4)


In many practical situations, we have several possible actions, and we must choose the best action. For example, we must find the best design of an object, or the best control of a plant. The set of possible actions is usually characterized by parameters x = (x 1, ..., x n), and the result of different actions (controls) is characterized by an objective function f(x).


Global Optimization Optimal Technique Optimality Criterion Global Optimization Problem Theoretical Justification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AAF98]
    Adjiman, C.S., Androulakis, I., Floudas, C.A.: A global optimization method, αBB, for general twice-differentiable constrained NLP II. Implementation and computational results. Computers and Chemical Engineering, 22, 1159–1179 (1998)CrossRefGoogle Scholar
  2. [ADAF98]
    Adjiman, C.S., Dallwig, S., Androulakis, I., Floudas, C.A.: A global optimization method, αBB, for general twice-differentiable constrained NLP I. Theoretical aspects. Computers and Chemical Engineering, 22, 1137–1158 (1998)CrossRefGoogle Scholar
  3. [AF04]
    Akrotirianakis, I.G., Floudas, C.A.: Computational experience with a new class of convex underestimators: box-constrained NLP problems. Journal of Global Optimization, 29, 249–264 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  4. [AF06]
    Akrotirianakis, I.G., Floudas, C.A. A new class of improved convex un derestimators for twice continuously differentiable constrained NLPs. Journal of Global Optimization, to appearGoogle Scholar
  5. [CG98]
    Casado, L.G., García, I.: New load balancing criterion for parallel interval global optimization algorithm, In: Proc. of the 16th IASTED International Conference, Garmisch-Partenkirchen, Germany, February 1998, 321–323 (1998)Google Scholar
  6. [CGC00]
    Casado, L.G., García, I., Csendes, T.: A new multisection technique in interval methods for global optimization. Computing, 65, 263–269 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. [Flo00]
    Floudas, C.A.: Deterministic Global Optimization: Theory, Methods, and Applications. Kluwer, Dordrecht (2000)Google Scholar
  8. [HP95]
    Horst, R., Pardalos, P.M. (eds): Handbook of Global Optimization. Kluwer, Dordrecht (1995)zbMATHGoogle Scholar
  9. [ISKS02]
    Iourinski, D., Starks, S.A., Kreinovich, V., Smith, S.F.: Swarm intelligence: theoretical proof that empirical techniques are optimal. In: Proceedings of the 2002 World Automation Congress WAC’2002, Orlando, Florida, June 9–13, 107–112 (2002)Google Scholar
  10. [KC01]
    Kreinovich, V., Csendes, T.: Theoretical justification of a heuristic sub-box selection criterion. Central European Journal of Operations Research, 9, 255–265 (2001)zbMATHMathSciNetGoogle Scholar
  11. [Kea96]
    Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht (1996)zbMATHGoogle Scholar
  12. [KES01]
    Kennedy, J., Eberhart, R., Shi, Y.: Swarm Intelligence. Morgan Kaufmann, San Francisco, California (2001)Google Scholar
  13. [KK98]
    Kearfott, R.B., Kreinovich, V.: Where to bisect a box? A theoretical explanation of the experimental results. In: Alefeld, G., Trejo, R.A. (eds) Interval Computations and its Applications to Reasoning Under Uncertainty, Knowledge Representation, and Control Theory. Proceedings of MEXICON’98, Workshop on Interval Computations, 4th World Congress on Expert Systems, México City, México (1998)Google Scholar
  14. [KK05]
    Kearfott, R.B., Kreinovich, V.: Beyond convex? Global optimization is feasible only for convex objective functions: a theorem. Journal of Global Optimization, 33, 617–624 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  15. [KSM97]
    Kreinovich, V., Starks, S.A., Mayer, G.: On a theoretical justification of the choice of epsilon-inflation in PASCAL-XSC. Reliable Computing, 3, 437–452 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  16. [MF94]
    Maranas, C.D., Floudas, C.A.: Global minimal potential energy conformations for small molecules. Journal of Global Optimization, 4, 135–170 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  17. [Mih96]
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin (1996)zbMATHGoogle Scholar
  18. [NK97]
    Nguyen, H.T., Kreinovich, V. Applications of Continuous Mathematics to Computer Science. Kluwer, Dordrecht (1997)zbMATHGoogle Scholar
  19. [Pin96]
    Pinter, J.D.: Global Optimization in Action. Kluwer, Dordrecht (1996)zbMATHGoogle Scholar
  20. [Rat92]
    Ratz, D.: Automatische Ergebnisverifikation bei globalen Optimierungs-problemen. Ph.D. dissertation, Universität Karlsruhe (1992)Google Scholar
  21. [Rat94]
    Ratz, D.: Box-splitting strategies for the interval Gauss-Seidel step in a global optimization method. Computing, 53, 337–354 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  22. [Rum80]
    Rump, S.M.: Kleine Fehlerschranken bei Matrixproblemen. Ph.D. dissertation, Universität Karlsruhe (1980)Google Scholar
  23. [Rum92]
    Rump, S.M.: On the solution of interval linear systems. Computing, 47, 337–353 (1992)CrossRefMathSciNetGoogle Scholar
  24. [Rum98]
    Rump, S.M.: A note on epsilon-inflation. Reliable Computing, 4(4), 371–375 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  25. [TS02]
    Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer, Dordrecht (2002)zbMATHGoogle Scholar
  26. [Vav91]
    Vavasis, S.A.: Nonlinear Optimization: Complexity Issues. Oxford University Press, New York (1991)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Christodoulos A. Floudas
    • 1
  • Vladik Kreinovich
    • 2
  1. 1.Department of Chemical EngineeringPrinceton UniversityPrincetonUSA
  2. 2.Department of Computer ScienceUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations