On the Goodness of Global Optimisation Algorithms, an Introduction into Investigating Algorithms

  • Eligius M. T. Hendrix
Part of the Optimization and Its Applications book series (SOIA, volume 4)


An early introductory text on Global Optimisation (GO), [TZ89], goes further than mathematical correctness in giving the reader an intuitive idea about concepts in GO. This chapter extends this spirit by introducing students and researchers to the concepts of Global Optimisation (GO) algorithms. The goal is to learn to read and interpret optimisation algorithms and to analyse their goodness. Before going deeper into mathematical analysis, it is good for students to get a flavour of the difficulty by letting them experiment with simple algorithms that can be followed by hand or spreadsheet calculations. Two simple one-dimensional examples are introduced and several simple NLP and GO algorithms arc elaborated. This is followed by some lessons that can be learned from investigating the algorithms systematically.


Local Search Global Optimisation Minimum Point Lipschitz Constant Global Optimization Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AL97]
    Aarts, E.H.L., Lenstra, J.K.: Local Search Algorithms. Wiley, New York (1997)Google Scholar
  2. [AST97]
    Ali, M.M., Story, C., Törn, A.: Application of stochastic global optimization algorithms to practical problems. Journal of Optimization Theory and Applications, 95, 545–563 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  3. BDH.
    Baritompa, W.P., Dür, M., Hendrix, E.M.T., Noakes, L., Pullan, W.J., Wood, G. R.: Matching stochastic algorithms to objective function landscapes. Journal of Global Optimization, 31, 579–598 (2005)zbMATHCrossRefGoogle Scholar
  4. [BH05]
    Baritompa, W.P., Hendrix, E.M.T.: On the investigation of stochastic global optimization algorithms. Journal of Global Optimization, 31, 567–578 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  5. BMW.
    Baritompa, W.P., Mladineo, R.H., Wood, G.R., Zabinsky, Z.B., Baoping, Z.: Towards pure adaptive search. Journal of Global Optimization, 7, 73–110 (1995)CrossRefGoogle Scholar
  6. [BR95]
    Boender, C.G.E., Romeijn H.E.: Stochastic methods. In: Horst, R., Pardalos, P.M. (eds) Handbook of Global Optimization, pp. 829–871. Kluwer, Dordrecht (1995)Google Scholar
  7. [BW98]
    Bulger, D.W., Wood, G.R.: Hesitant adaptive search for global optimisation. Mathematical Programming, 81, 89–102 (1998)MathSciNetGoogle Scholar
  8. [DP67]
    Danilin, Y., Piyavskii, S.A.: An algorithm for finding the absolute minimum. Theory of Optimal Decisions, 2, 25–37 (1967) (in Russian)Google Scholar
  9. [Glo86]
    Glover, F.W.: Future paths for integer programming and link to artificial intelligence. Computers and Operations Research, 13, 533–554 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [GMW81]
    Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, New York (1981)zbMATHGoogle Scholar
  11. [Hen98]
    Hendrix, E.M.T.: Global Optimization at Work. PhD thesis, Wageningen University, Wageningen, June (1998)Google Scholar
  12. [HK00]
    Hendrix, E.M.T., Klepper, O.: On uniform covering, adaptive random search and raspberries. Journal of Global Optimization, 18, 143–163 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  13. [HOG01]
    Hendrix, E.M.T., Ortigosa, P.M., García, I.: On success rates for controlled random search. Journal of Global Optimization, 21, 239–263 (2001)zbMATHCrossRefGoogle Scholar
  14. [HR96]
    Hendrix, E.M.T., Roosma, J.: Global optimization with a limited solution time. Journal of Global Optimization, 8, 413–427 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  15. [Kar63]
    Karnopp, D.C.: Random search techniques for optimization problems. Automatica, 1, 111–121 (1963)CrossRefGoogle Scholar
  16. [Pin96]
    Pintér, J.D.: Global Optimization in Action; Continuous and Lipschitz Optimization: Algorithms, Implementations and Application. Kluwer, Dordrecht (1996)zbMATHGoogle Scholar
  17. [Rom92]
    Romeijn, H.E.: Global Optimization by Random Walk Sampling Methods. PhD thesis, Erasmus University Rotterdam, Rotterdam, May (1992)zbMATHGoogle Scholar
  18. [Sca85]
    Scales, L.E.: Introduction to Non-Linear Opimization. Macmillan, London (1985)Google Scholar
  19. [Shu72]
    Shubert, B.O.: A sequential method seeking the global maximum of a function. SIAM Journal of Numerical Analysis, 9, 379–388 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  20. [TAV99]
    Torn, A., Ali, M.M., Viitanen, S.: Stochastic global optimization: Problem classes and solution techniques. Journal of Global Optimization, 14, 437–447 (1999)CrossRefMathSciNetGoogle Scholar
  21. [TZ89]
    Törn, A., Zilinskas, A.: Global Optimization. Vol. 350 of Lecture Notes in Computer Science. Springer, Berlin (1989)zbMATHGoogle Scholar
  22. [Zhi91]
    Zhigljavsky, A.A.: Theory of Global Random Search. Kluwer, Dordrecht (1991)Google Scholar
  23. [ZS92]
    Zabinsky, Z.B., Smith, R.L.: Pure adaptive search in global optimization. Mathematical Programming, 53, 323–338 (1992)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Eligius M. T. Hendrix
    • 1
  1. 1.Operationele Research en Logistiek GroepWageningen UniversiteitThe Netherlands

Personalised recommendations