Skip to main content

Abstract

This review focuses on the realisation of optical sensors able to monitor the effect of complex space radiation on biological components, based on the biosensor concept. A biosensor is a device that can reveal a biochemical variable using a biological component interfaced with a transducer. It issues an electric signal which is easy to process, depending on the analysed variable. Biosensors are useful to study the effect of stress conditions on living organisms. One of the goals of this research was to develop two types of biosensors able to monitor directly the response of oxygenic photosynthetic organisms to radiation present in space in view of their importance for future space colonization. In ground experiments and in balloon stratosphere flights, the photosynthetic process has been analysed at the level of photosystem II (PSII), the supramolecular pigment-protein complex in the chloroplast which catalyses the light-induced transfer of electrons from water to plastoquinone; PSII splits water into molecular oxygen, protons and electrons, thereby sustaining an aerobic atmosphere on Earth and providing the reducing equivalents necessary to fix carbon dioxide to organic molecules, creating biomass, food and fuel. The results indicated that presence of space radiation in the dark has a synergistic effect on photosystem II activity, suggesting that PSII D1 protein turnover may be involved in resistance to space stress. The resistance of the tested microorganisms to space stress seems to be related to their position on the evolutive scale of photosynthesis. The present studies allow to establish a regular and reliable correlation between measured physical characteristics of space radiation and biological radiation effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nechitailo GS, Mashinsky AL. In: Space Biology; Studies at Orbital Station. Moscow: Mir Publisher, 1993.

    Google Scholar 

  2. Spurny F. Radiation doses at high altitudes and during space flights. Radiat Phys Chem 2001; 61:301–307.

    Article  CAS  Google Scholar 

  3. Ballarini F, Ottolenghi A. Models of chromosome aberration induction: an example based on radiation track structure. Cytogenet Genome Res 2004; 104(1–4):149–56.

    Article  PubMed  CAS  Google Scholar 

  4. Beauregard G, Potier M. Temperature dependence of the radiation inactivation of proteins. Anal Biochem 1985; 150:117–120.

    Article  PubMed  CAS  Google Scholar 

  5. Le Maire M, Thauvette L, De Foresta B et al. Effects of ionizing radiations on proteins. Biochem J 1990; 267:431–439.

    PubMed  Google Scholar 

  6. Cui FZ, Lin YB, Zhang DM et al. Irradiation effects on secondary structure of protein induced by KeV ions. Radiat Phys Chem 2001; 60:35–38.

    Article  CAS  Google Scholar 

  7. Ohnishi T, Takahashi A, Ohnishi K. Biological effects of space radiation. Biol Sci Space 2001; 15(Suppl S):203–10.

    Google Scholar 

  8. Takahashi A, Ohnishi K, Takahashi S et al. Differentiation of Dictyostelium discoideum vegetative cells into spores during Earth orbit in space. Adv Space Res 2001; 28(4):549–53.

    Article  PubMed  CAS  Google Scholar 

  9. Kranz AR, Bork U, Bucker H et al. Biological damage by ionizing cosmic rays in dry Arabidopsis seeds. Int J Rad Appl Instrum D 1990; 17(2):155–65.

    PubMed  CAS  Google Scholar 

  10. Horneck G, Eschweiler U, Reitz G et al. Biological responses to space: results of the experiment “Exobiological Unit” of ERA on EURECA I. Adv Space Res 1995; 16(8):105–18.

    Article  PubMed  CAS  Google Scholar 

  11. Horneck G, Rettberg P, Reitz G et al. Protection of bacterial spores in space, a contribution to the discussion on Panspermia. Orig Life Evol Biosph 2001; 31(6):527–47.

    Article  PubMed  CAS  Google Scholar 

  12. Koblizek M, Masojidek J, Komenda J et al. An ultrasensitive PSII-based biosensor for monitoring a class of photosynthetic herbicides. Biotechnol Bioeng 1998; 60:664–669.

    Article  PubMed  CAS  Google Scholar 

  13. Giardi MT, Koblízek M, Masojídek J. Photosystem II-based biosensors for detection of pollutants. Biosens Bioelectron 2001; 16:1027–1033.

    Article  PubMed  CAS  Google Scholar 

  14. Bonting SL. Utilization of biosensors and chemical sensors for space application. Biosens Bioelectron 1992; 7:535–548.

    Article  PubMed  CAS  Google Scholar 

  15. Vaijapurkar SG, Deepshikha A, Chaudhuri SK et al. Gamma-irradiated onions as a biological indicator of radiation dose. Radiat Meas 2001; 33:833–836.

    Article  PubMed  CAS  Google Scholar 

  16. Mattoo A, Giardi MT, Raskind A et al. Dynamic metabolism of photosystem II reaction center proteins and pigments. a review. Physiol Plant 1999; 107:454–461.

    Article  CAS  Google Scholar 

  17. Giardi MT. Phosphorylation and disassembly of photosystem II as an early stage of photoinhibition. Planta 1993; 190:107–113.

    Article  CAS  Google Scholar 

  18. Giardi MT, Komenda J, Masojidek J. Role of protein phosphorylation on the sensitivity of photosystem II to strong illumination. Physiol Plant 1994; 92:181–187.

    Article  CAS  Google Scholar 

  19. Krause GH. Chlorophyll Fluorescence and Photosynthesis: The Basics. Annu Rev Plant Mol Biol 1991; 42:313–349.

    Article  CAS  Google Scholar 

  20. Lazàr D. Chlorophyll fluorescence induction. Biochim Biophys Acta 1999; 1412:1–28.

    Article  PubMed  Google Scholar 

  21. Saakov V, Lang M, Schindlef C et al. Changes in chlorophyll fluorescence and photosynthetic activity of French bean leaves induced by gamma radiation. Photosynthetica 1992; 27(3):369–383.

    CAS  Google Scholar 

  22. Horneck G. Radiobiological Experiment in space: a review. Nicl Tracks Radiat Meas 1992; 20:85–205.

    Google Scholar 

  23. Giardi MT, Esposito D, Saviano R et al. Interactive experiments in the Stratosphere: an automatic System to monitor the effect of space radiation on oxygenic organisms in BIRBA flight. In: Monti R, Bonifazi C, eds. Microgravity and Space Station Utilization (MSSU). Vol 2. Napoli: Liguori Editore, 2002:100–105.

    Google Scholar 

  24. Berthold DA, Babcock GT, Yocum CF. A highly resolved oxygen-evolving photosystem II preparation from spinach thylakoid membranes. FEBS Lett 1981; 134:231–234.

    Article  CAS  Google Scholar 

  25. Govindjee. Sixty-three years since Kautsky: Chlorophyll a Fluorescence. Aust J Plant Physiol 1995; 22:131–160.

    Article  CAS  Google Scholar 

  26. Mitaroff A, Cern MS. The CERN-EU high-energy reference field (CERF) facility for dosimetry at commercial flight altitudes and in space. Radiat Prot Dosimetry 2002; 102(1):7–22.

    PubMed  CAS  Google Scholar 

  27. Angelini G, Ragni P, Esposito D et al. A device to study the effect of space radiation on photosynthetic organisms. Phys Med 2001; 17(suppl 1):267–8

    PubMed  Google Scholar 

  28. Metropolis N, Rosenbluth AW, Rosenbluth MN et al. Equation of state calculations by fast computing machines. J Chem Phys 1953; 21(6):1087–1092.

    Article  CAS  Google Scholar 

  29. Tremmel IG, Kirchhoff H, Weis E et al. Dependence of plastoquinol diffusion on the shape, size, and density of integral thylakoid proteins. Biochim Biophys Acta 2003; 1607:97–109.

    Article  PubMed  CAS  Google Scholar 

  30. Zanini A, Ongaro C, Manfredotti C et al. Neutron spectrometry at various altitudes in atmosphere by passive detector technique. Il Nuovo Cimento C 2001; 024:471–784.

    Google Scholar 

  31. Dubinin NA, Vaulina EN. Evolution and Gravitation, Nauka Moscow 1979;17–38.

    Google Scholar 

  32. Neichitailo G, Gordeev A. Effect of artificial electric firelds on plants grown under microgravity condition. Adv Space Res 2001; 28:629–631.

    Article  Google Scholar 

  33. Kempner ES. Novel predictions from radiation target analysis. Trends Biochem Sci 1993; 18(7):236–9.

    Article  PubMed  CAS  Google Scholar 

  34. Angelini G, Ragni P, Esposito D et al. A biodosimeter to reveal gamma radiation. Upica CNR 2000; 17.

    Google Scholar 

  35. Angelini G, Alessandrelli S, Pace E et al. Effect of γ-radiation on Photosystem II activities for the realisation of Biosensors. Proceedings of the II Workshop on chemical sensors and Biosensors 1999; 358–367.

    Google Scholar 

  36. Esposito D, Pace E, Margonelli A et al. A biodosimeter that utilises isolated enzymes to detect of ionising radiation. Radiat Prot Dosimetry 2002; 99(1–4):303–305.

    PubMed  CAS  Google Scholar 

  37. Miller JH, Bolger G, Kempner E. Radiation target analysis of enzymes with stable free radicals. Radiat Phys Chem 2001; 62:33–38.

    Article  CAS  Google Scholar 

  38. Kempner ES. Molecular size determination of enzymes by radiation inactivation. Adv Enzymol 1988; 61:107–147.

    PubMed  CAS  Google Scholar 

  39. Giardi MT, Rigoni F, Barbato R et al. Relationships between heterogeneity of the PSII core complex from grana particles and phosphorylation. Biochem Biophys Res Commun 1991; 176(3):1298–305.

    Article  PubMed  CAS  Google Scholar 

  40. Torzillo G, Bernardini P, Masojidek J. On line monitoring of chlorophyll fluorescence to assess the extent of photoinhibition of photosynthesis induced by high oxygenic and low temperature and its effect of production of outdoor cultures of Spirulina platensis (cyanobacteria). J Phycol 1998; 34:504–510.

    Article  CAS  Google Scholar 

  41. Xiong F, Lederer F, Lukavsky J et al. Screening of freshwater algae (Chlorophyta, Chromophyta) for ultraviolet-B sensitivity of the photosynthetic apparatus. J Plant Physiol. 1996; 148:42–48.

    CAS  Google Scholar 

  42. Turner PE, Chao L. Sex and the evolution of intrahost competition in RNA virus phi6. Genetics 1998; 50:523–532.

    Google Scholar 

  43. Woese C. The universal ancestor. Proc Natl Acad Sci USA 1998; 95:6854–6859.

    Article  PubMed  CAS  Google Scholar 

  44. Blankenship R, Hartman H. The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 1998; 23:94–97.

    Article  PubMed  CAS  Google Scholar 

  45. Franco E, Alessandrelli S, Masojidek J et al. Modulation of D1 protein turnover under cadmium and heat stresses monitored by (35S) methionine incorporation. Plant Sci 1999; 144:53–61.

    Article  CAS  Google Scholar 

  46. Tsiotis G, Psylinakis M, Woplensinger B et al. Investigation of the structure of spinach photosystem II reaction center complex. Eur J Biochem 1999; 259(1–2):320–4.

    Article  PubMed  CAS  Google Scholar 

  47. Giardi MT, Masojidek J, Godde D. Effects of stresses on the turnover of D1 reaction centre II protein: review, Physiol Plantarum 1997; 101:635–642.

    Article  CAS  Google Scholar 

  48. Geiken B, Masojídek J, Rizzuto M et al. Incorporation of (35S) methionine in higher plants reveals that stimulation of the D1 reaction centre II protein turnover accompanies tolerance to heavy metal stress. Plant Cell Environ 1998; 21:1265–1273.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dania Esposito .

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience

About this chapter

Cite this chapter

Esposito, D. et al. (2006). Biodevices for Space Research. In: Biotechnological Applications of Photosynthetic Proteins: Biochips, Biosensors and Biodevices. Biotechnology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36672-2_17

Download citation

Publish with us

Policies and ethics