Skip to main content

Modulation of Classical Neurotransmitter Systems by σ Receptors

  • Chapter
Sigma Receptors

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aydar E, Palmer CP, Klyachko VA, Jackson MB. The σ receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron 2002, 34:399–410.

    Article  PubMed  CAS  Google Scholar 

  2. Wilke RA, Luparadus PJ, Grandy DK, Rubenstein M, Low MJ, Jackson MB. K+ channel modulation in rodent neurohypophysial nerve terminals by σ receptors and not by dopamine receptors. J Physiol 1999a 517:391–406.

    Article  PubMed  CAS  Google Scholar 

  3. Wilke RA, Mehta RP, Luparadus PJ, Chen Y, Ruoho AE, Jackson MB. Sigma receptor photolabeling and a receptor-mediated modulation of potassium channels in tumor cells. J Biol Chem 1999b, 18387–18392.

    Google Scholar 

  4. Hayashi T, Su TP. Regulating ankyrin dynamics: Roles of σ1 receptors. Proc Natl Acad Sci USA 2001, 98:491–496.

    Article  PubMed  CAS  Google Scholar 

  5. Su TP, Hayashi T. Cocaine affects the dynamics of cytoskeletal proteins via σ1 receptors. Trends Pharmacol Sci 2001, 22:456–8.

    Article  PubMed  CAS  Google Scholar 

  6. Monnet FP, Mahe V, Robel P, Balieu EE. Neurosteroids via σ receptors, modulate [3H]norepinephrine release evoked by N-methyl-D-aspartate in the rat hippocampus. Proc Natl Acad Sci USA 1995, 92:3774–3778.

    Article  PubMed  CAS  Google Scholar 

  7. Hong W, Werling LL. Evidence that σ1 receptors may not be directly coupled to G proteins. Eur J Pharmacol2000, 408:117–125.

    Article  PubMed  CAS  Google Scholar 

  8. Boyer JL, Graber SG, Waldo GL, Harden K, Garrison JC. Selective activation of phospholipase C by recombinant G-protein a-and β/-subunits. J Biol Chem 1994. 269:2814–2819.

    PubMed  CAS  Google Scholar 

  9. Bouchard P, Quirion R. [3H]1,3-ditolylguanidine and [3H](+)-pentazocine binding sites in the rat brain: autoradiographic visualization of the putative σ1 and σ2 receptor subtypes. Neuroscience 1997, 76:467–477.

    Article  PubMed  CAS  Google Scholar 

  10. Leitner ML, Hohmann AG, Patrick SL, Walker JM. Regional variation in the ratio of al/02 binding in rat brain. Eur J Pharmacol 1994, 259:65–69.

    Article  PubMed  CAS  Google Scholar 

  11. Alonso G, Phan V-L, Guillemain I, Saunier M, Legrand A, Anoal M, Maurice T. Immunocytochemical localization of the σ1 receptor in the adult rat central nervous system. Neuroscience 2000, 97:155–170.

    Article  PubMed  CAS  Google Scholar 

  12. Kitaichi K, Chabot JG, Moebius FF, Flandorfer A, Glossman H, Quirion R. Expression of the purported σ, (sigma-1) receptor in the mammalian brain and its possible relevance in definits induced by antagonism of the NMDA receptor complex as revealed using an antisense strategy. J Chem Neuroanat 2000, 20:375–387.

    Article  PubMed  CAS  Google Scholar 

  13. McCann DJ, Weissman AD, Su T-P. Sigma-1 and o2 sites in rat brain: comparison of regional, ontogenetic, and subcellular patterns. Synapse 1994, 17: 182–189.

    Article  PubMed  CAS  Google Scholar 

  14. Morin-Surun MP, Collin T, Denavit-Saubie M, Baulieu EE, Monnet FP. Intracellular σ1 receptor modulates phospholipase C and protein kinase C activities in the brainstem. Proc Natl Acad Sci USA 1999, 96:8196–8199.

    Article  PubMed  CAS  Google Scholar 

  15. Hayashi T, Maurice T, Su TP. Ca2+ signalling via σ1 receptors: novel regulatory mechanism affecting intracellular Ca2+ concentration. J Pharmacol Exp Ther 2000, 293:788–798.

    PubMed  CAS  Google Scholar 

  16. Bowen WD. Sigma receptors: recent advances and new clinical potentials. Pharmaceutica Acta Helvetica 2000, 74:211–218.

    Article  CAS  Google Scholar 

  17. Gonzalez-Alvear GM and Werling LL. Regulation of [3H]dopamine release from rat striatal slices by a receptor ligands. J Pharm Exp Ther 1994, 271:212–219.

    CAS  Google Scholar 

  18. Vilner BJ, Bowen WD. Modulation of cellular calcium by σ2 receptors: release from intracellular stores in human SK-N-SH neuroblastoma cells. J Pharmacol Exp Ther 2000, 292:900–911

    PubMed  CAS  Google Scholar 

  19. Bergeron R, Debonnel G, De Montigny C. Modification of the N-methyl-D-aspartate response by antidepressant σ receptor ligands. Eur J Pharmacol 1993; 240:319–323.

    Article  PubMed  CAS  Google Scholar 

  20. Bergeron R, de Montigny C, Debonnel G. Biphasic effects of σ ligands on the neuronal response to N-methyl-D-aspartate. Naunyn-Schmeid Arch Pharmacol 1995, 351:252–260.

    CAS  Google Scholar 

  21. Bergeron R, de Montigny C, Debonnel G. Effect of short-term and long-term treatments with σ ligands on the N-methyl-D-aspartate response in the CA3 region of the rat dorsal hippocampus. Br J Pharmacol 1997, 120: 1351–1359.

    Article  PubMed  CAS  Google Scholar 

  22. Bergeron R, de Montigny C, Debonnel G. Pregnancy reduces brain σ receptor function. Br J Pharmacol 1999, 127: 1769–1776.

    Article  PubMed  CAS  Google Scholar 

  23. Monnet FP, Debonnel G, Junien JL, De Montigny C. N-Methyl-D-aspartate-induced neuronal activation is selectively modulated by σ receptors. Eur J Pharmacol 1990, 79:441–445.

    Article  Google Scholar 

  24. Debonnel G, Bergeron R, de Montigny C. Potentiation by dehydroepiandosterone of the neuronal response to N-methyl-D-aspartate in the CA3 region of the rat dorsal hippocampus: an effect mediated via σ receptors. J Endocrinol 1996, 150 Suppl:S33–S42.

    PubMed  CAS  Google Scholar 

  25. Monnet FP, Debonnel G, Bergeron R, Gronier B, de Montingny C. The effects of σ ligands and of neuropeptide Y on N-methyl-D-aspartate-induced neuronal activation of CA3 dorsal hippocampus neurons are differentially affected by pertussis toxin. Br J Pharmacol 1994, 1l2:709–715.

    Google Scholar 

  26. Klette KL, Lin Y, Clapp LE, De Coster MA, Moreton JE, Tortella FC. Neuroprotective σ ligands attenuate NMDA and trans-ACPD-induced calcium signaling in rat primary neurons. Brain Res 1997, 756:231–240.

    Article  PubMed  CAS  Google Scholar 

  27. Shimazu S, Katsuki H, Takenada C, Tomita M, Kuma T, Kaneko S, Akaike A. Sigma receptor ligands attenuate N-methyl-D-aspartate cytotoxicity in dopaminergic neurons of mesencephalic slice cultures. Eur J Pharmacol2000, 388: 139–146.

    Article  PubMed  CAS  Google Scholar 

  28. Vilner BJ, De Costa BR, Bowen WD. Cytotoxic effects of σ ligands: σ receptor-mediated alterations in cellular morphology and viability. J Neurosci 1995, 15:643–654.

    Google Scholar 

  29. Largent BL, Gundlach AL, Snyder SH. Pharmacological and autoradiographic discrimination of o and phencyclidine receptor binding sites in brain with (+)-[3H]sKF 10,047, (+)-[3H]-3-[3-hydroxyphenyl]-N-(1-propyl)piperidine and [3H]-1-[1-(2-thienyl)cyclohexyl]piperidine. J Pharmacol Exp Ther 1986, 238:739–748.

    PubMed  CAS  Google Scholar 

  30. Monaghan DT, Bridges RJ, Cotman CW. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Ann Rev Pharmacol Toxicol 1989, 29:365–402.

    Article  CAS  Google Scholar 

  31. Guitart X, Mendez R, Ovalle S, Andreu F, Carceller A, Farre AJ, Zamanillo D. Regulation of ionotropic glutamate receptor subunits in different rat brain areas by a preferential σ1 receptor ligand and potential antipsychotic. Neuropsychopharmacology 2000, 23:539–546.

    Article  PubMed  CAS  Google Scholar 

  32. Annels SJ, Ellis Y, Davies JA. Non-opioid antitussives inhibit endogenous glutamate release from rabbit hippocampal slices. Brain Res 1991, 15:341–343.

    Article  Google Scholar 

  33. Ellis Y, Davies JA. The effects of σ ligands on the release of glutamate from rat striatal slices. Naunyn-Schmeidebergs Arch Pharmacol 1994, 350:143–148.

    CAS  Google Scholar 

  34. Matsuno K, Matsunaga K, Mita S. Increase of extracellular acetylcholine level in rat frontal cortex induced by (+)N-allylnormetazoxine as measured by brain microdialysis. Brain Res 1992, 575:315–219.

    Article  PubMed  CAS  Google Scholar 

  35. Matsuno K, Matsunaga K, Senda T, Mita S. Increase in extracellular acetylcholine level by σ ligands in rat frontal cortex. J Pharm Exp Ther 1993, 26:851–859.

    Google Scholar 

  36. Kobayashi T, Matsuno K, Mita S. Regional differences of the effect of σ receptor ligands on the acetylcholine release in the rat brain. J Neural Transm Gen Sect 1996a,1O3:661–669.

    Article  Google Scholar 

  37. Kobayashi T, Matsuno K, Nakata K, Mita S. Enhancement of acetylcholine release by SA4503, a novel σ1 receptor agonist, in the rat brain. J Pharm Exp Ther 1996b, 279:106–113.

    CAS  Google Scholar 

  38. Junien JL, Roman FJ, Brunells G, Pascaud X. 501784, a novel σ1 ligand, potentiates [3H]acetylcholine release from rat hippocampal slices. Eur J Pharmacol 1991, 200:343–345.

    Article  PubMed  CAS  Google Scholar 

  39. Horan B, Gifford AN, Matsuno K, Mita S, Ashby CR Jr. Effect of SA4503 on the electrically evoked release of 3H-acetylcholine from striatal and hippocampal rat brain slices. Synapse 2002, 46: 1–3.

    Article  PubMed  CAS  Google Scholar 

  40. Matsuno K, Senda T, Matsunaga K, Mita S. Ameliorating effects of σ receptor ligands on the impairment of passive avoidance tasks in mice: involvement in the central acetylcholinergic system. Eur J Pharmacol 1994, 11:43–51.

    Article  Google Scholar 

  41. Senda T, Matsuno K, Okamto K, Kobayashi T, Nakata K, Mita S. Ameliorating effect of SA4503, a novel σ1 receptor agonist, on memory impairments induced by cholinergic dysfunction in rats. Eur J Pharmacol 1996, 315: 1–10.

    Article  PubMed  CAS  Google Scholar 

  42. Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE. The effects of morphine and nalorphine-like drugs in the non-dependent and morphine-dependent chronic spinal dog. J Pharm Exp Ther 1976, 197:517–532.

    CAS  Google Scholar 

  43. Vaupel DB. Naltrexone fails to antagonize the σ effects of PCP and SKF10,047 in the dog. Eur J Pharmacol 1983, 92:264–269.

    Article  Google Scholar 

  44. Tsao L-I, Su T-P. Naloxone-sensitive, haloperidol-sensitive, [3H] (+)SKF-10,047-binding protein partially purified from rat liver and rat brain membranes: An opioidlo receptor? Synapse 1997, 25: 117–124.

    Article  PubMed  CAS  Google Scholar 

  45. Couture S, Debonnel G. Some of the effects of the selective σ ligand (+)pentazocine are mediated via a naloxone-sensitive receptor. Synapse 2001, 39:323–331.

    Article  PubMed  CAS  Google Scholar 

  46. Chien C-C, Pastemak GW. Selective antagonism of opioid analgesia by a o system. J Pharm Exp Ther 1994, 271:1583–1590.

    CAS  Google Scholar 

  47. Chien C-C, Pasternak GW. (-)-Pentazocine analgesia in mice: interactions with a σ receptor system. J Pharm Exp Ther 1995a, 271: 1583–1590.

    Google Scholar 

  48. Chien C-C, Pastemak GW. σ Antagonists potentiate opioid analgesia in rats. Neuroscience Lett 1995b, 190: 137–139.

    Article  CAS  Google Scholar 

  49. Rossi G, Leventhal L, Bolan EA, Pasternak GW. Pharmacological characterization of orphanin FQlnociceptin and its fragments. J Pharm Exp Ther 1997, 282858–865.

    CAS  Google Scholar 

  50. Rossi G, Leventhal L, Pasternak GW. Naloxone-sensitive orphanin1FQ-induced analgesia in mice Eur J Pharmacol 1996, 31l:R7–R8.

    Article  Google Scholar 

  51. Kobayashi T, Ikeda K, Togashi S, Itoh N, Kumanishi T. Effects of σ ligands on the nociceptinlorphanin FQ receptor co-expressed with the G-protein-activated K+ channel in Xenopus oocytes. Br J Phamacol 1997, 120:986–987.

    Article  CAS  Google Scholar 

  52. King MA, Bradshaw S, Chang AH, Pintar JE, Pasternak GW. Potentiation of opioid analgesia in dopamine-2 receptor knock-out mice: evidence for a tonically active antiopioid system. J Neurosci 2001, 21:7788–7792.

    PubMed  CAS  Google Scholar 

  53. Gudelsky GA. Effects of σ receptor ligands on the extracellular concentration of dopamine in the striatum and prefrontal cortex of the rat. Eur J Pharmacol 1995, 286:223–228.

    Article  PubMed  CAS  Google Scholar 

  54. Sanchez-Arroyos R, Guitart X. Electrophysiological effects of E-5842, a σ1 receptor ligand and potential atypical antipsychotic, on A9 and A10 dopamine neurons. Eur J Pharmacol 1999, 378:31–37.

    Article  PubMed  CAS  Google Scholar 

  55. Booth RG, Baldessarini RJ. (+)-6,7-benzomorphan σ ligands stimulate dopamine synthesis in rat corpus striatum tissue. Brain Res 1991, 557:349–352.

    Article  PubMed  CAS  Google Scholar 

  56. Gronier B, Debonnel G. Involvement of σ receptors in the modulation of glutamatergic1NMDA neurotransmission in the dopaminergic systems. Eur J Pharmacol 1999, 368(2-3): 183–196.

    Article  PubMed  CAS  Google Scholar 

  57. Gonzalez-Alvear GM, Werling LL. Sigma-1 receptors in rat striatum regulate NMDAstimulated [3H]dopamine release via a presynaptic mechanism. Eur J Pharmacol 1995b,294:713–719.

    Article  PubMed  CAS  Google Scholar 

  58. Gonzalez-Alvear GM, Werling LL. Release of [3H]dopamine from guinea pig striatal slices is modulated by σ1 receptors. Naunyn-Schmeideberg Arch Pharmacol 1997;356:455–461.

    Article  Google Scholar 

  59. Weatherspoon JK, Gonzalez-Alvear GM, Frank AR, Werling L. Regulation of [3H]dopamine release from mesolimbic and mesocortical and areas of guinea pig brain by a receptors. Schizophrenia Res 1996, 21:51–62.

    Article  CAS  Google Scholar 

  60. Nuwayhid SJ, Werling LL. Sigma-1 receptor agonist-mediated regulation of N-methyl-D-aspartate-stimulated [3H]dopamine release is dependent upon PKC. J Pharm Exp Ther 2002,364–369.

    Google Scholar 

  61. Sanchez C, Nuwayhid SJ, Werling LL. Signaling of NPY receptors and σ receptors via and PLCIPKC system. (In preparation) 2005.

    Google Scholar 

  62. Novakova M, Ela C, Bowen WD, Hasin Y, Elim Y. Highly selective σ receptor ligands elevate inositol 1,4,5-trisphosphate production in rat cardiac myocytes. Eur J Pharmacol 1998, 353:315–327.

    Article  PubMed  CAS  Google Scholar 

  63. Rebecchi MJ, Pentyala SN. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 2000, 80:1291–1335.

    PubMed  CAS  Google Scholar 

  64. Werling LL. Sigma receptor-active steroids and neurotransmitter release. Int J Neuropsychopharmacology 2002, 5:S29.2

    Google Scholar 

  65. Roman FJ, Pascaud X, Duffy 0, Vauche D, Martin B, Junien JL. Neuropeptide Y and peptide YY interact with rat brain o and PCP binding sites. Eur J Pharmacol 1989, 174:301–302.

    Article  PubMed  CAS  Google Scholar 

  66. Auk DT, Radeff JM, Werling LL. Modulation of [3H]dopamine release from rat nucleus accumbens by neuropeptide Y via a σ1-like receptor. J Pharm Exp Ther 1998, 284553–560.

    Google Scholar 

  67. Ault DT, Werling LL. Differential modulation of NMDA-stimulated [3H]dopamine release from rat striatum by neuropeptide Y and σ receptor ligands. Brain Res 1997, 760:210–217.

    Article  PubMed  CAS  Google Scholar 

  68. Ault DT, Werling LL. Neuropeptide Y-mediated enhancement of [3H]dopamine release from rat prefrontal cortex is reversed by σ1 receptor antagonists. Schizophrenia Res 1998, 31:27–36.

    Article  CAS  Google Scholar 

  69. Hong W, Werling LL. Lack of effects by σ ligands on neuropeptide Y-induced G-protein activation in rat hippocampus and cerebellum. Brain Res 2001, 901:208–218.

    Article  PubMed  CAS  Google Scholar 

  70. Parker SL, Parker MS, Swaetman T, Cowley WR. Characterization of the G protein and phospholipase C-coupled agonist binding to the Y-1 neuropeptide Y receptor in rat brain: sensitivity to G protein activators and inhibitors and to inhibitors of phospholipase C. J Pharm Exp Ther 1998, 286:382–391.

    CAS  Google Scholar 

  71. Gudelsky GA. Biphasic effect of σ receptor ligands on the extracellular concentration of dopamine in the striatum of rat. J Neural Transm 1999, 106:849–856.

    Article  PubMed  CAS  Google Scholar 

  72. Izenwasser S, Thompson-Montgomery DT, Deben SE, Chowdhury IN, Werling LL. Modulation of amphetamine-stimulated (transporter-mediated) dopamine release by 0 2 receptor agonists and antagonists in vitro. Eur J Pharmacol 1998, 346: 189–196.

    Article  PubMed  CAS  Google Scholar 

  73. Weatherspoon JK, Werling LL. Modulation of amphetamine-stimulated [3H]dopamine release from rat pheochromocytoma (PC12) cells by σ2 receptors. J Pharm Exp Ther 1999, 289:278–284.

    CAS  Google Scholar 

  74. Derbez AE, Werling LL. Sigma-2 receptor regulation of dopamine transporter activity via protein kinase C. J Pharmacol Exp Ther 2002, 301:306–314.

    Article  PubMed  CAS  Google Scholar 

  75. Liu X, Nuwayhid S, Christie M, Kassiou M, Werling LL. Trishomocubanes: novel σ ligands modulating amphetamine-stimulated [3H]dopamine release in vitro. Eur J Pharmacol2001, 422:39–45.

    Article  PubMed  CAS  Google Scholar 

  76. Nguyen VH, Kassiou M, Johnston GA, Christie MJ. Comparison of binding parameters of σ, and o2 binding sites in rat and guinea pig brain membranes: novel subtypeselective trishomocubanes. Eur J Pharmacol 1996, 311:233–240.

    Article  PubMed  CAS  Google Scholar 

  77. Zahniser NR, Doolen S. Chronic and acute regulation of Na+/CI--dependent neurotransmitter transporters: drugs, substrates, presynaptic receptors, and signaling systems. Pharmacol Ther 2001, 92(1): 21–55.

    Article  PubMed  CAS  Google Scholar 

  78. Gonzalez-Alvear GM, Werling LL. Sigma receptor regulation of norepinephrine release from rat hippocampal slices. Brain Res 1995a 673:61–69.

    Article  PubMed  CAS  Google Scholar 

  79. Gonzalez-Alvear GM, Thompson-Montgomery D, Deben SE, Werling LL. Functional and binding properties of σ receptors in rat cerebellum. J Neurochem 1995, 65: 2509–2516.

    Article  PubMed  CAS  Google Scholar 

  80. Weatherspoon JK, Gonzalez-Alvear GM, Werling LL. Regulation of [3H]norepinephrine release from guinea pig hippocampus by σ2 receptors. Eur J Pharmacol 1997, 326: 133–138.

    Article  PubMed  CAS  Google Scholar 

  81. Monnet FP, De Costa BR, Bowen WD. Differentiation of σ ligand-activated receptor subtypes that modulate NMDA-evoked [3H]noradrenaline release in rat hippocampal slices. Br J Pharmacol 1996, 119:65–72.

    PubMed  CAS  Google Scholar 

  82. Hong W, Nuwayhid SJ, Werling LL. Modulation of bradykinin-induced calcium changes in SH-SYSY cells by neurosteroids and sigma receptor ligands via a shared mechanism. Synapse 2004 54:102–110.

    Article  PubMed  CAS  Google Scholar 

  83. Nuwayhid SJ, Werling LL. Sigma22) receptors as a target for cocaine action in the rat striatum. Eur J Pharmacol2006 535:98–103.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda L. Werling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Werling, L.L., Derbez, A.E., Nuwayhid, S.J. (2007). Modulation of Classical Neurotransmitter Systems by σ Receptors. In: Su, TP., Matsumoto, R.R., Bowen, W.D. (eds) Sigma Receptors. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36514-5_10

Download citation

Publish with us

Policies and ethics