Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alter A., Duddy M., Hebert S. et al. (2003) Determinants of human B cell migration across brain endothelial cells. J. Immunol. 170:4497–4505.

    PubMed  CAS  Google Scholar 

  • Archelos J. J., Previtali S. C., Hartung H. P. (1999) The role of integrins in immune-mediated diseases of the nervous system. Trends Neurosci. 22:30–38.

    Article  PubMed  CAS  Google Scholar 

  • Archelos J. J., Storch M. K., Hartung H. P. (2000) The role of B cells and autoantibodies in multiple sclerosis. Ann. Neurol. 47:694–706.

    Article  PubMed  CAS  Google Scholar 

  • Babbe H., Roers A., Waisman A. et al. (2000) Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med. 192:393–404.

    Article  PubMed  CAS  Google Scholar 

  • Baranzini S. E., Jeong M. C., Butunoi C. et al. (1999) B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions. J. Immunol. 163:5133–5144.

    PubMed  CAS  Google Scholar 

  • Barnett M. H., Prineas J. W. (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann. Neurol. 55:458–468.

    Article  PubMed  Google Scholar 

  • Berger T., Rubner P., Schautzer F. et al. (2003) Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N. Engl. J. Med. 349:139–145.

    Article  PubMed  CAS  Google Scholar 

  • Bjartmar C., Trapp B. D. (2001) Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr. Opin. Neurol. 14:271–278.

    Article  PubMed  CAS  Google Scholar 

  • Buljevac D., van Doornum G. J., Flach H. Z. et al. (2005) Epstein-Barr virus and disease activity in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 76:1377–1381.

    Article  PubMed  CAS  Google Scholar 

  • Cannella B., Raine C. S. (1995) The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann. Neurol. 37:424–435.

    Article  PubMed  CAS  Google Scholar 

  • Casetta I., Granieri E. (2000) Clinical infections and multiple sclerosis: contribution from analytical epidemiology. J. Neurovirol. 6 Suppl 2:S147–S151.

    Google Scholar 

  • Cepok S., Rosche B., Grummel V. et al. (2005a) Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain 128:1667–1676.

    Article  PubMed  Google Scholar 

  • Cepok S., Zhou D., Srivastava R. et al. (2005b) Identification of Epstein-Barr virus proteins as putative targets of the immune response in multiple sclerosis. J. Clin. Invest 115:1352–1360.

    PubMed  CAS  Google Scholar 

  • Chabas D., Baranzini S. E., Mitchell D. et al. (2001) The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294:1731–1735.

    Article  PubMed  CAS  Google Scholar 

  • Christen U., von Herrath M. G. (2005) Infections and autoimmunity–good or bad? J. Immunol. 174:7481–7486.

    PubMed  CAS  Google Scholar 

  • Colombo M., Dono M., Gazzola P. et al. (2003) Maintenance of B lymphocyte-related clones in the cerebrospinal fluid of multiple sclerosis patients. Eur. J. Immunol. 33:3433–3438.

    Article  PubMed  CAS  Google Scholar 

  • Colombo M., Dono M., Gazzola P. et al. (2000) Accumulation of clonally related B lymphocytes in the cerebrospinal fluid of multiple sclerosis patients. J. Immunol. 164:2782–2789.

    PubMed  CAS  Google Scholar 

  • Compston A., Coles A. (2002) Multiple sclerosis. Lancet 359:1221–1231.

    Article  PubMed  Google Scholar 

  • Corcione A., Casazza S., Ferretti E. et al. (2004) Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis. Proc. Natl. Acad. Sci. U. S. A 101:11064–11069.

    Article  PubMed  CAS  Google Scholar 

  • Cserr H. F., Knopf P. M. (1992) Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol. Today 13:507–512.

    Article  PubMed  CAS  Google Scholar 

  • Dandekar A. A., Wu G. F., Pewe L. et al. (2001) Axonal damage is T cell mediated and occurs concomitantly with demyelination in mice infected with a neurotropic coronavirus. J. Virol. 75:6115–6120.

    Article  PubMed  CAS  Google Scholar 

  • De Stefano N., Matthews P. M., Fu L. et al. (1998) Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121:1469–1477.

    Article  PubMed  Google Scholar 

  • Deluca G. C., Williams K., Evangelou N. et al. (2006) The contribution of demyelination to axonal loss in multiple sclerosis. Brain 129:1507–1516.

    Article  PubMed  CAS  Google Scholar 

  • Dutta R., McDonough J., Yin X. et al. (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann. Neurol. 59:478–489.

    Article  PubMed  CAS  Google Scholar 

  • Dyment D. A., Ebers G. C., Sadovnick A. D. (2004) Genetics of multiple sclerosis. Lancet Neurol. 3:104–110.

    Article  PubMed  CAS  Google Scholar 

  • Ebers G. C., Sadovnick A. D., Risch N. J. (1995) A genetic basis for familial aggregation in multiple sclerosis. Canadian Collaborative Study Group. Nature 377:150–151.

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt B., Ransohoff R. M. (2005) The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol. 26:485–495.

    Article  PubMed  CAS  Google Scholar 

  • Espejo C., Penkowa M., Demestre M. et al. (2005) Time-course expression of CNS inflammatory, neurodegenerative tissue repair markers and metallothioneins during experimental autoimmune encephalomyelitis. Neuroscience 132:1135–1149.

    Article  PubMed  CAS  Google Scholar 

  • Friese M. A., Fugger L. (2005) Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain 128:1747–1763.

    Article  PubMed  Google Scholar 

  • Fujinami R. S., Oldstone M. B. (1985) Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 230:1043–1045.

    Article  PubMed  CAS  Google Scholar 

  • Fujinami R. S., von Herrath M. G., Christen U. et al. (2006) Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol. Rev. 19:80–94.

    Article  PubMed  CAS  Google Scholar 

  • Gay F. W., Drye T. J., Dick G. W. et al. (1997) The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis. Identification and characterization of the primary demyelinating lesion. Brain 120:1461–1483.

    Article  PubMed  Google Scholar 

  • Gold R., Hartung H. P., Toyka K. V. (2000) Animal models for autoimmune demyelinating disorders of the nervous system. Mol. Med Today 6:88–91.

    Article  PubMed  CAS  Google Scholar 

  • Gold R., Linington C., Lassmann H. (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129:1953–1971.

    Article  PubMed  Google Scholar 

  • Goverman J., Woods A., Larson L. et al. (1993) Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 72:551–560.

    Article  PubMed  CAS  Google Scholar 

  • Greter M., Heppner F. L., Lemos M. P. et al. (2005) Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat. Med. 11:328–334.

    Article  PubMed  CAS  Google Scholar 

  • Haas J., Hug A., Viehover A. et al. (2005) Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur. J. Immunol. 35:3343–3352.

    Article  PubMed  CAS  Google Scholar 

  • Hemmer B., Fleckenstein B. T., Vergelli M. et al. (1997) Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T cell clone. J. Exp. Med. 185:1651–1659.

    Article  PubMed  CAS  Google Scholar 

  • Hemmer B., Kieseier B., Cepok S. et al. (2003) New immunopathologic insights into multiple sclerosis. Curr. Neurol. Neurosci. Rep. 3:246–255.

    Article  PubMed  Google Scholar 

  • Hemmer B., Nessler S., Zhou D. et al. (2006) Immunopathogenesis and immunotherapy of multiple sclerosis. Nat Clin Pract Neurol 2:201–211.

    Article  PubMed  CAS  Google Scholar 

  • Heppner F. L., Greter M., Marino D. et al. (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med. 11:146–152.

    Article  PubMed  CAS  Google Scholar 

  • Hickey W. F. (2001) Basic principles of immunological surveillance of the normal central nervous system. Glia 36:118–124.

    Article  PubMed  CAS  Google Scholar 

  • Huseby E. S., Liggitt D., Brabb T. et al. (2001) A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J. Exp. Med. 194:669–676.

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen M., Cepok S., Quak E. et al. (2002) Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients. Brain 125:538–550.

    Article  PubMed  Google Scholar 

  • Jones T. B., Ankeny D. P., Guan Z. et al. (2004) Passive or active immunization with myelin basic protein impairs neurological function and exacerbates neuropathology after spinal cord injury in rats. J. Neurosci. 24:3752–3761.

    Article  PubMed  CAS  Google Scholar 

  • Kalled S. L. (2005) The role of BAFF in immune function and implications for autoimmunity. Immunol. Rev. 204:43–54.

    Article  PubMed  CAS  Google Scholar 

  • Kawakami N., Nagerl U. V., Odoardi F. et al. (2005) Live imaging of effector cell trafficking and autoantigen recognition within the unfolding autoimmune encephalomyelitis lesion. J. Exp. Med. 201:1805–1814.

    Article  PubMed  CAS  Google Scholar 

  • Kenealy S. J., Herrel L. A., Bradford Y. et al. (2006) Examination of seven candidate regions for multiple sclerosis: strong evidence of linkage to chromosome 1q44. Genes Immun. 7:73–76.

    Article  PubMed  CAS  Google Scholar 

  • Kerschensteiner M., Stadelmann C., Dechant G. et al. (2003) Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann. Neurol. 53:292–304.

    Article  PubMed  CAS  Google Scholar 

  • Kieseier B. C., Storch M. K., Archelos J. J. et al. (1999) Effector pathways in immune mediated central nervous system demyelination. Curr. Opin. Neurol. 12:323–336.

    Article  PubMed  CAS  Google Scholar 

  • Krumbholz M., Theil D., Derfuss T. et al. (2005) BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J. Exp. Med. 201:195–200.

    Article  PubMed  CAS  Google Scholar 

  • Kuhlmann T., Lingfeld G., Bitsch A. et al. (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125:2202–2212.

    Article  PubMed  Google Scholar 

  • Lampasona V., Franciotta D., Furlan R. et al. (2004) Similar low frequency of anti-MOG IgG and IgM in MS patients and healthy subjects. Neurology 62:2092–2094.

    PubMed  CAS  Google Scholar 

  • Lang H. L., Jacobsen H., Ikemizu S. et al. (2002) A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat. Immunol. 3:940–943.

    Article  PubMed  CAS  Google Scholar 

  • Langrish C. L., Chen Y., Blumenschein W. M. et al. (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201:233–240.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann P. V., Sercarz E. E., Forsthuber T. et al. (1993) Determinant spreading and the dynamics of the autoimmune T-cell repertoire. Immunol. Today 14:203–208.

    Article  PubMed  CAS  Google Scholar 

  • Lucchinetti C., Bruck W., Parisi J. et al. (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47:707–717.

    Article  PubMed  CAS  Google Scholar 

  • Madsen L. S., Andersson E. C., Jansson L. et al. (1999) A humanized model for multiple sclerosis using HLA-DR2 and a human T-cell receptor. Nat. Genet. 23:343–347.

    Article  PubMed  CAS  Google Scholar 

  • McCoy L., Tsunoda I., Fujinami R. S. (2006) Multiple sclerosis and virus induced immune responses: autoimmunity can be primed by molecular mimicry and augmented by bystander activation. Autoimmunity 39:9–19.

    Article  PubMed  CAS  Google Scholar 

  • McDonald W. I., Compston A., Edan G. et al. (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann. Neurol. 50:121–127.

    Article  PubMed  CAS  Google Scholar 

  • Mead R. J., Singhrao S. K., Neal J. W. et al. (2002) The membrane attack complex of complement causes severe demyelination associated with acute axonal injury. J. Immunol. 168:458–465.

    PubMed  CAS  Google Scholar 

  • Meinl E., Krumbholz M., Hohlfeld R. (2006) B lineage cells in the inflammatory central nervous system environment: migration, maintenance, local antibody production, and therapeutic modulation. Ann. Neurol. 59:880–892.

    Article  PubMed  CAS  Google Scholar 

  • Miller S. D., Olson J. K., Croxford J. L. (2001) Multiple pathways to induction of virus-induced autoimmune demyelination: lessons from Theiler’s virus infection. J. Autoimmun. 16:219–227.

    Article  PubMed  CAS  Google Scholar 

  • Moalem G., Leibowitz-Amit R., Yoles E. et al. (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat. Med. 5:49–55.

    Article  PubMed  CAS  Google Scholar 

  • Moore F. G., Wolfson C. (2002) Human herpes virus 6 and multiple sclerosis. Acta Neurol. Scand. 106:63–83.

    Article  PubMed  CAS  Google Scholar 

  • Neumann H., Cavalie A., Jenne D. E. et al. (1995) Induction of MHC class I genes in neurons. Science 269:549–552.

    Article  PubMed  CAS  Google Scholar 

  • O’Connor K. C., Appel H., Bregoli L. et al. (2005) Antibodies from inflamed central nervous system tissue recognize myelin oligodendrocyte glycoprotein. J. Immunol. 175:1974–1982.

    PubMed  Google Scholar 

  • Oksenberg J. R., Barcellos L. F., Cree B. A. et al. (2004) Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. Am. J. Hum. Genet. 74:160–167.

    Article  PubMed  CAS  Google Scholar 

  • Oksenberg J. R., Barcellos L. F., Hauser S. L. (1999) Genetic aspects of multiple sclerosis. Semin. Neurol. 19:281–288.

    Article  PubMed  CAS  Google Scholar 

  • Oksenberg J. R., Stuart S., Begovich A. B. et al. (1990) Limited heterogeneity of rearranged T-cell receptor V alpha transcripts in brains of multiple sclerosis patients. Nature 345:344–346.

    Article  PubMed  CAS  Google Scholar 

  • Ota K., Matsui M., Milford E. L. et al. (1990) T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346:183–187.

    Article  PubMed  CAS  Google Scholar 

  • Park H., Li Z., Yang X. O. et al. (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6:1133–1141.

    Article  PubMed  CAS  Google Scholar 

  • Parks W. C., Wilson C. L., Lopez-Boado Y. S. (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev. Immunol. 4:617–629.

    Article  PubMed  CAS  Google Scholar 

  • Peterson J. W., Bo L., Mork S. et al. (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann. Neurol. 50:389–400.

    Article  PubMed  CAS  Google Scholar 

  • Pitt D., Werner P., Raine C. S. (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat. Med 6:67–70.

    Article  PubMed  CAS  Google Scholar 

  • Polman C. H., Reingold S. C., Edan G. et al. (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann. Neurol. 58:840–846.

    Article  PubMed  Google Scholar 

  • Poser C. M., Paty D. W., Scheinberg L. et al. (1983) New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann. Neurol. 13:227–231.

    Article  PubMed  CAS  Google Scholar 

  • Prinz M., Garbe F., Schmidt H. et al. (2006) Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J. Clin. Invest 116:456–464.

    Article  PubMed  CAS  Google Scholar 

  • Qin Y., Duquette P., Zhang Y. et al. (1998) Clonal expansion and somatic hypermutation of V(H) genes of B cells from cerebrospinal fluid in multiple sclerosis. J. Clin. Invest 102:1045–1050.

    Article  PubMed  CAS  Google Scholar 

  • Radbruch A., Muehlinghaus G., Luger E. O. et al. (2006) Competence and competition: the challenge of becoming a long-lived plasma cell. Nat. Rev. Immunol. 6:741–750.

    Article  PubMed  CAS  Google Scholar 

  • Raine C. S., Cannella B., Hauser S. L. et al. (1999) Demyelination in primate autoimmune encephalomyelitis and acute multiple sclerosis lesions: a case for antigen-specific antibody mediation. Ann. Neurol. 46:144–160.

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishna C., Stohlman S. A., Atkinson R. D. et al. (2002) Mechanisms of central nervous system viral persistence: the critical role of antibody and B cells. J. Immunol. 168:1204–1211.

    PubMed  CAS  Google Scholar 

  • Richt J. A., Schmeel A., Frese K. et al. (1994) Borna disease virus-specific T cells protect against or cause immunopathological Borna disease. J. Exp. Med. 179:1467–1473.

    Article  PubMed  CAS  Google Scholar 

  • Rivers T. M., Sprunt D. H., Berry G. P. (1933) Observations on the attempts to produce acute disseminated allergic encephalomyelitis in primates. J. Exp. Med 58:39–53.

    Article  PubMed  CAS  Google Scholar 

  • Sawcer S., Ban M., Maranian M. et al. (2005) A high-density screen for linkage in multiple sclerosis. Am. J. Hum. Genet. 77:454–467.

    Article  PubMed  Google Scholar 

  • Schluesener H. J., Sobel R. A., Linington C. et al. (1987) A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease. J. Immunol. 139:4016–4021.

    PubMed  CAS  Google Scholar 

  • Serafini B., Rosicarelli B., Magliozzi R. et al. (2006) Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells. J. Neuropathol. Exp. Neurol. 65:124–141.

    Article  PubMed  CAS  Google Scholar 

  • Skulina C., Schmidt S., Dornmair K. et al. (2004) Multiple sclerosis: brain-infiltrating CD8+ T cells persist as clonal expansions in the cerebrospinal fluid and blood. Proc. Natl. Acad. Sci. U. S. A 101:2428–2433.

    Article  PubMed  CAS  Google Scholar 

  • Sospedra M., Martin R. (2005) Immunology of multiple sclerosis. Annu. Rev. Immunol. 23:683–747.

    Article  PubMed  CAS  Google Scholar 

  • Sriram S., Steiner I. (2005) Experimental allergic encephalomyelitis: a misleading model of multiple sclerosis. Ann. Neurol. 58:939–945.

    Article  PubMed  CAS  Google Scholar 

  • Steinman L. (1999) Assessment of animal models for MS and demyelinating disease in the design of rational therapy. Neuron 24:511–514.

    Article  PubMed  CAS  Google Scholar 

  • Stohlman S. A., Hinton D. R. (2001) Viral induced demyelination. Brain Pathol. 11:92–106.

    Article  PubMed  CAS  Google Scholar 

  • Stys P. K. (2005) General mechanisms of axonal damage and its prevention. J. Neurol. Sci. 233:3–13.

    Article  PubMed  CAS  Google Scholar 

  • Swanborg R. H., Whittum-Hudson J. A., Hudson A. P. (2002) Human herpesvirus 6 and Chlamydia pneumoniae as etiologic agents in multiple sclerosis -a critical review. Microbes. Infect. 4:1327–1333.

    Article  PubMed  Google Scholar 

  • Teunissen C. E., Dijkstra C., Polman C. (2005) Biological markers in CSF and blood for axonal degeneration in multiple sclerosis. Lancet Neurol. 4:32–41.

    Article  PubMed  Google Scholar 

  • Thacker E. L., Mirzaei F., Ascherio A. (2006) Infectious mononucleosis and risk for multiple sclerosis: a meta-analysis. Ann. Neurol. 59:499–503.

    Article  PubMed  Google Scholar 

  • Trapp B. D., Peterson J., Ransohoff R. M. et al. (1998) Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338:278–285.

    Article  PubMed  CAS  Google Scholar 

  • Trebst C., Ransohoff R. M. (2001) Investigating chemokines and chemokine receptors in patients with multiple sclerosis: opportunities and challenges. Arch. Neurol. 58:1975–1980.

    Article  PubMed  CAS  Google Scholar 

  • Trip S. A., Schlottmann P. G., Jones S. J. et al. (2005) Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann. Neurol. 58:383–391.

    Article  PubMed  Google Scholar 

  • Tsunoda I., Kuang L. Q., Kobayashi-Warren M. et al. (2005) Central nervous system pathology caused by autoreactive CD8+ T-cell clones following virus infection. J. Virol. 79:14640–14646.

    Article  PubMed  CAS  Google Scholar 

  • Ubogu E. E., Cossoy M. B., Ransohoff R. M. (2006) The expression and function of chemokines involved in CNS inflammation. Trends Pharmacol. Sci. 27:48–55.

    Article  PubMed  CAS  Google Scholar 

  • Uccelli A., Aloisi F., Pistoia V. (2005) Unveiling the enigma of the CNS as a B-cell fostering environment. Trends Immunol. 26:254–259.

    Article  PubMed  CAS  Google Scholar 

  • Vanderlugt C. L., Miller S. D. (2002) Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat. Rev. Immunol. 2:85–95.

    Article  PubMed  CAS  Google Scholar 

  • Viglietta V., Baecher-Allan C., Weiner H. L. et al. (2004) Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199:971–979.

    Article  PubMed  CAS  Google Scholar 

  • von Herrath M. G., Fujinami R. S., Whitton J. L. (2003) Microorganisms and autoimmunity: making the barren field fertile? Nat Rev. Microbiol. 1:151–157.

    Article  CAS  Google Scholar 

  • Waxman S. G. (2005) Sodium channel blockers and axonal protection in neuroinflammatory disease. Brain 128:5–6.

    Article  PubMed  Google Scholar 

  • Waxman S. G. (2006) Ions, energy and axonal injury: towards a molecular neurology of multiple sclerosis. Trends Mol. Med 12:192–195.

    Article  PubMed  CAS  Google Scholar 

  • Weaver C. T., Harrington L. E., Mangan P. R. et al. (2006) Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity. 24:677–688.

    Article  PubMed  CAS  Google Scholar 

  • Wucherpfennig K. W., Strominger J. L. (1995) Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80:695–705.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J., Markovic-Plese S., Lacet B. et al. (1994) Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J. Exp. Med. 179:973–984.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y., Da R. R., Guo W. et al. (2005) Axon reactive B cells clonally expanded in the cerebrospinal fluid of patients with multiple sclerosis. J. Clin. Immunol. 25:254–264.

    Article  PubMed  CAS  Google Scholar 

  • Zipp F., Aktas O. (2006) The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci. 29:518–527.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Menge, T., Hemmer, B., Nessler, S., Zhou, D., Kieseier, B.C., Hartung, HP. (2007). Immunopathogenesis of Multiple Sclerosis: Overview. In: Zhang, J. (eds) Immune Regulation and Immunotherapy in Autoimmune Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-36003-4_10

Download citation

Publish with us

Policies and ethics