Skip to main content

Cancer Growth: A Nonclassical Nonlinear Phenomenon?

  • Chapter
Universality of Nonclassical Nonlinearity
  • 785 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.A. Guyer and P. Johnson, Nonlinear mesoscopic elasticity: Evidence for a new class of materials, Phys. Today 52, 30-36 (1999).

    Article  Google Scholar 

  2. S. Hirsekorn and P.P. Delsanto, On the universality of nonclassical nonlinear phenomena and their classification, Appl. Phys. Lett. 84, 1413-1415 (2004).

    Article  ADS  Google Scholar 

  3. M. Scalerandi, A. Romano, G.P. Pescarmona, P.P. Delsanto, and C.A. Condat, Nutrient competition as a determinant for cancer growth, Phys. Rev. E 59, 2206-2217 (1999).

    Article  ADS  Google Scholar 

  4. B. Capogrosso Sansone, M. Scalerandi, and C.A. Condat, Diffusion with evolving sources and competing sinks: Development of angiogenesis, Phys. Rev. E 65, 011902, 1-9 (2001).

    Google Scholar 

  5. M. Scalerandi, B. Capogrosso Sansone, C. Benati, and C. A. Condat, Competition effects in the dynamics of tumor cords, Phys. Rev. E 65, 051918, 1-10 (2002).

    Google Scholar 

  6. A Survey of Models for Immune-Immune System Dynamics, edited by J.A. Adam and N. Bellomo (Birkhäuser, Boston, 1997).

    Google Scholar 

  7. R. Kansal, S. Torquato, G.R. Harsh, IV, E.A. Chiocca, and T.S. Deisboeck, Simulated brain tumor growth dynamics using three-dimensional cellular automata, J. Theor. Biol. 203, 367-382 (2000).

    Article  Google Scholar 

  8. S.C. Ferreira, Jr., M.L. Martins, and M.J. Vilela, Reaction-diffusion model for the growth of avascular tumor, Phys. Rev. E 65, 021907, 1-8 (2002).

    MathSciNet  Google Scholar 

  9. G. Hamilton, Multicellular spheroids as an in vitro tumor model, Cancer Lett. 131, 29-34 (1998).

    Article  MathSciNet  Google Scholar 

  10. K.E. Thomson and H.M. Byrne, Modelling the internalization of labelled cells in tumour spheroids, Bull. Math. Biol. 61, 601-623 (1999).

    Article  Google Scholar 

  11. W. Mueller-Klieser, Tumor biology and experimental therapeutics, Crit. Rev. Oncol/Hematol. 36, 123-139 (2000).

    Article  Google Scholar 

  12. R. Chignola, A. Schenetti, E. Chiesa, R. Foroni, S. Sartoris, A. Brendolan, G. Tridente, G. Andrighetto, and L. Liberati, Forecasting the growth of multicell tumour spheroids: implications for the dynamic growth of solid tumours, Cell Prolif. 33, 219-229 (2000).

    Article  Google Scholar 

  13. J.M. Kelm, N.E. Timmins, C.J. Brown, M. Fussenegger, and L.K. Nielsen, A method for the generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types, Biotech. Bioeng. 83, 173-180 (2003).

    Article  Google Scholar 

  14. G.P. Pescarmona, The evolutionary advantage of being conservative: The role of hysteresis, this volume, Chapter 7.

    Google Scholar 

  15. A.J. Banchio and C.A. Condat, Seasonality and harvesting, revisited, this volume, Chapter 9.

    Google Scholar 

  16. G.B. West, J.H. Brown, and B.J. Enquist, A general model for ontogenetic growth, Nature 413, 628-631 (2001).

    Article  ADS  Google Scholar 

  17. C. Guiot, P.G. Degiorgis, P.P. Delsanto, P. Gabriele, and T.S. Deisboeck, Does tumor growth follow a “universal law”?, J. Theor. Biol. 225, 147-151 (2003).

    Article  MathSciNet  Google Scholar 

  18. P.P. Delsanto, C. Guiot, P.G. Degiorgis, C.A. Condat, Y. Mansury, and T. Deisboeck, Growth model for multicellular tumor spheroids, Appl. Phys. Lett. 85, 4225-4227 (2004).

    Article  ADS  Google Scholar 

  19. M. Kleiber, Body size and metabolism, Hilgardia 6, 315-353 (1932).

    Google Scholar 

  20. P.S. Dodds, D.H. Rothman, and J.S. Weitz, Re-examination of the “3/4-law” of metabolism, J. Theor. Biol. 209, 9-27 (2001).

    Article  Google Scholar 

  21. A.M. Makarieva, V.G. Gorshkov, and B.-L. Li, A note on metabolic rate dependence on body size in plants and animals, J. Theor. Biol. 221, 301-307 (2003).

    Article  Google Scholar 

  22. Circadian Cancer Therapy, edited by W.J.M. Hrushesky CRC, Boca Raton, FL, 1994).

    Google Scholar 

  23. T. Roenneberg and M. Merrow, The network of time: Understanding the molecular circadian system, Curr Biol. 13, R198-207 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Condat, C.A., Gregor, B.F., Mansury, Y., Deisboeck, T.S. (2006). Cancer Growth: A Nonclassical Nonlinear Phenomenon?. In: Delsanto, P.P. (eds) Universality of Nonclassical Nonlinearity. Springer, New York, NY. https://doi.org/10.1007/978-0-387-35851-2_8

Download citation

Publish with us

Policies and ethics