Skip to main content

Hierarchies of Waves in Nonclassical Materials

  • Chapter
Book cover Universality of Nonclassical Nonlinearity

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Askar, A., (1985), Lattice Dynamical Foundations of Continuum Theories. (Singapore: World Scientific).

    Google Scholar 

  • Berezovski, A., Engelbrecht, J., and Maugin, G. A., (2003), Numerical simulation of two-dimensional wave propagation in functionally graded materials. Eur. J. Mech. Solids, 22, 2, 257-265.

    Article  MATH  MathSciNet  Google Scholar 

  • Brillouin, L., (1953), Wave Propagation in Periodic Structures. (Toronto and London: Dover).

    MATH  Google Scholar 

  • Capriz, G., (1989), Continua with Microstructure. (New York: Springer).

    MATH  Google Scholar 

  • Christiansen, P. L., Muto, V., and Rionero, S., (1992), Solitary wave solution to a system of Boussinesq-like equations. Chaos Solitons Fractals, 2, 45-50.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Engelbrecht, J., (1983), Nonlinear Wave Processes of Deformation in Solids, (Boston: Pitman).

    MATH  Google Scholar 

  • Engelbrecht, J., (1997), Nonlinear Wave Dynamics. Complexity and Simplicity, (Dordrecht: Kluwer).

    Google Scholar 

  • Engelbrecht, J. and Pastrone, F., (2003), Waves in microstructured solids with strong nonlinearities in microscale. Proc. Estonian Acad. Sci. Phys. Math., 52, 12-20.

    MATH  MathSciNet  Google Scholar 

  • Engelbrecht, J., Berezovski, A., Pastrone, F., and Braun, M., (2004), Waves in microstructured materials and dispersion. Phil. Mag., 85, Nos 33-35, 4127-4141.

    Article  ADS  Google Scholar 

  • Engelbrecht, J., Cermelli, P., and Pastrone, F., (1999), Wave hierarchy in microstructured solids. Geometry, Continua and Microstructure, edited by G. A. Maugin (Paris: Hermann Publ.), pp. 99-111.

    Google Scholar 

  • Eringen, A. C., (1966), Linear theory of micropolar elasticity. J. Math. Mech., 15, 909-923.

    MATH  MathSciNet  Google Scholar 

  • Eringen, A. C., (1999), Microcontinuum Field Theories. I Foundations and Solids. (New York: Springer).

    MATH  Google Scholar 

  • Erofeyev, V. I., (2003), Wave Processes in Solids with Microstructure. (Singapore: World Scientific).

    Book  MATH  Google Scholar 

  • Janno, J. and Engelbrecht, J., (2005), Solitary waves in nonlinear microstructured materials, J. Phys. A: Math. Gen. 38, 5159-5172.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Maugin, G. A., (1990), Internal variables and dissipative structures. J. Nonequilib. Thermodyn., 15, 173-192.

    Article  ADS  Google Scholar 

  • Maugin, G. A., (1993), Material Inhomogeneities in Elasticity. (London: Chapman & Hall).

    MATH  Google Scholar 

  • Maugin, G. A., (1999), Nonlinear Waves in Elastic Crystals. (Oxford: Oxford University Press).

    MATH  Google Scholar 

  • Maugin, G. A. and Muschik W., (1994), Thermodynamics with internal variables. J. Nonequilib. Thermodyn. 19, 217-249 (Part I), 250-289 (Part II).

    Article  MATH  ADS  Google Scholar 

  • Mindlin, R. D., (1964), Micro-structure in linear elasticity. Arch. Rat. Mech. Anal., 16, 51-78.

    Article  MATH  MathSciNet  Google Scholar 

  • Pastrone, F., (2003), Waves in solids with vectorial microstructure. Proc. Estonian Acad. Sci., 52, 1, 21-29.

    MATH  MathSciNet  Google Scholar 

  • Porubov, A. V., (2003), Amplification of Nonlinear Strain Waves in Solids. (Singapore: World Scientific).

    Book  MATH  Google Scholar 

  • Samsonov, A., (2001), Strain Solutons in Solids and How to Construct Them. (London: Chapman & Hall/CRC).

    Book  Google Scholar 

  • Santosa, F. and Symes W. W., (1991), A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math., 51, 984-1005.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, Z.-P. and Sun, C. T., (2002), Modeling micro-inertia in heterogeneous materials under dynamic loading. Wave Motion, 36, 473-485.

    Article  MATH  Google Scholar 

  • Whitham, G. B., (1974), Linear and Nonlinear Waves. (New York: Wiley).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Engelbrecht, J., Pastrone, F., Braun, M., Berezovski, A. (2006). Hierarchies of Waves in Nonclassical Materials. In: Delsanto, P.P. (eds) Universality of Nonclassical Nonlinearity. Springer, New York, NY. https://doi.org/10.1007/978-0-387-35851-2_3

Download citation

Publish with us

Policies and ethics