A knowledge-based methodology applied to linguistic engineering

  • P. Martínez
  • A. García-Serrano
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT)


A methodological approach to the design of structured knowledge models for natural language processing (NLP) applications is presented. It takes the inherent interdisciplinarity of this area into account and deals with the linguistic knowledge involved in these systems. The key features of the modeling methodology comprise the decomposition of linguistic knowledge sources in specialized sub-areas to tackle the complexity problem and a focus on cognitive architectures that allow for modularity, scalability and reusability. This methodology is operationalized through a tool that allows software development of real knowledge-based applications in a modular way. Text interpretation for conceptual database modeling is described using this methodology, extracting the relevant information for application purposes by using different linguistic cues and by following various analysis paths.


Knowledge-based systems software architecture linguistic engineering 


  1. Abney, S. (1996). Part-of-speech tagging and partial parsing in Corpus-Based Methods in Language and Speech. An ELSNET book, Kluwer.Google Scholar
  2. Cowie, J., and Lehnert, W. (1996). Information extraction. Communications of the ACM 39, 1.CrossRefGoogle Scholar
  3. Cuena, J. and Molina, M. (1997). KSM: An environment for Design of Structured Knowledge Models in Knowledge-Based Systems-Advanced Concepts, Techniques and Applications. Spyros G. Tzafestas (ed.), World Scientific.Google Scholar
  4. Cuena, J., Hernandez, J. and Molina, M., (1996). Knowledge Oriented Design of an Application for Real Time Traffic Management: The TRYS System. Proc 12th European Conference on Artificial Intelligence ECAI 96. Budapest.Google Scholar
  5. Cunningham, H., Humphreys, K., Gaizauskas, R. and Wilks, Y. (1997). Software Infrastructure for Natural Language Processing. 5thConference on Applied Natural Language ProcessingGoogle Scholar
  6. De Miguel, A., Piattini, M., Martinez, M. and Marcos, E. (1996). ENEAS/BD: Un Entorno para la Ensenanza Avanzada de Sistemas de Bases de Datos. Primeras Jornadas de Investigación y Docencia en Bases de Datos, La Coruna.Google Scholar
  7. Delisle, S., Barker, K., Copeck, T. and Szpakowicz, S. (1996). Interactive Semantic Analysis of Technical Texts. Computational Intelligence, 12(2), 273–306.CrossRefGoogle Scholar
  8. Jacobs, P. S. and Rau, L. F. (1993). Innovations in text interpretation, Artificial Intelligence, 63, 143–191.CrossRefGoogle Scholar
  9. Martínez, P. (1995). Using ALEP as a tool to develop NLP applications: a bilingual grammar and style checker. 2nd ALEP User Group Workshop, Luxembourg.Google Scholar
  10. Martínez, P. and García-Serrano, A. (1997). Una propuesta de estructuración del conocimiento para la adquisición de esquemas conceptuales de bases de datos a partir de textos. Proc. Sociedad Espanola para el Procesamiento del Lenguaje Natural, SEPLN’97, Madrid.Google Scholar
  11. Rumbaugh, J. (1991). Object-oriented modeling and design, Prentice-Hall.Google Scholar
  12. Simkins, N. (1994) An Open Architecture for Language Engineering, in First Language Engineering Convention, Paris.Google Scholar
  13. Sparck Jones, K. (1996) Evaluating Natural Language Processing Systems. NL AI Series.Google Scholar
  14. Yourdon, E. (1989). Modern structured analysis, Prentice-Hall.Google Scholar

Copyright information

© IFIP 1998

Authors and Affiliations

  • P. Martínez
    • 1
  • A. García-Serrano
    • 2
  1. 1.Dpto. InformáticaUniversidad Carlos III de MadridMADRIDSpain
  2. 2.Dpto. Inteligencia ArtificialFacultad de Informática. Universidad Politécnica de Madrid Campus de MontegancedoMadridSpain

Personalised recommendations