Aboveground-Belowground Linkages, Ecosystem Development, and Ecosystem Restoration

  • David A. Wardle
  • Duane A. Peltzer


All terrestrial ecosystems consist of explicit aboveground and belowground biotic components. Although these have traditionally been considered in isolation from one another, there has been increasing recognition over the past decade or so that these components interact with each other to drive processes at both the community and ecosystem levels of resolution (e.g., van der Putten et al. 2001, Wardle et al. 2004a, Bardgett 2005).


Soil Biota Soil Community Vegetation Succession Ecosystem Property Ecosystem Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aerts, R., and Berendse, F. 1988. The effect of increased nutrient availability on vegetation dynamics in wet heathland. Vegetatio 76:63–69.Google Scholar
  2. Alpert, P., and Maron J. L. 2000. Carbon addition as a countermeasure against biological invasion by plants. Biological Invasions 2:33–40.CrossRefGoogle Scholar
  3. Atkinson, I. A. E., and Greenwood, R. M. 1989. Relationship between moas and plants. New Zealand Journal of Ecology 12(supplement):67–96.Google Scholar
  4. Augustine, D. J., and McNaughton, S. J. 1998. Ungulate effects on the functional species composition of plant communities: Herbivore selectivity and plant tolerance. Journal of Wildlife Management 62:1165–1183.CrossRefGoogle Scholar
  5. Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. M., and Vivanco, J. M. 2003. Allelopathy and exotic plants: From genes to invasion. Science 301:1377–1380.PubMedCrossRefGoogle Scholar
  6. Bardgett, R. D. 2005. The Biology of Soil: A Community and Ecosystem Approach. Oxford: Oxford University Press.Google Scholar
  7. Bardgett, R. D., and Wardle, D. A. 2003. Herbivore mediated linkages between aboveground and belowground communities. Ecology 84:2258–2268.CrossRefGoogle Scholar
  8. Bardgett, R. D., Wardle, D. A., and Yeates, G. W. 1998. Linking above-ground and below-ground interactions: How plant responses to foliar herbivory influence soil organisms. Soil Biology and Biochemistry 30:1867–1878.CrossRefGoogle Scholar
  9. Bellingham, P. J., Walker, L. R., and Wardle, D. A. 2001. Differential facilitation by a nitrogen fixing shrub during primary succession influences relative performance of canopy tree species. Journal of Ecology 89:861–875.CrossRefGoogle Scholar
  10. Bellingham, P. J., Peltzer, D. A., and Walker, L. R. 2005. Contrasting effects of dominant native and exotic shrubs on floodplain succession. Journal of Vegetation Science 16:135–142.CrossRefGoogle Scholar
  11. Belnap, J., Phillips, S., Sherrod, S., and Moldenke, A. 2005. Soil biota can change after exotic plant invasion: Does this explain ecosystem processes? Ecology 86:3007–3017.CrossRefGoogle Scholar
  12. Bever, J. D. 2003. Soil community feedback and the coexistance of competitors: Conceptual frameworks and empirical tests. New Phytologist 157:465–473.CrossRefGoogle Scholar
  13. Binkley, D., and Giardina, C. 1998. Why trees affect soils in temperate and tropical forests: The warp and woof of tree/soil interactions. Biogeochemistry 42:89–106.CrossRefGoogle Scholar
  14. Blumenthal, D. M., Jordan, N. R., and Russell, M. P. 2003. Soil carbon addition controls weeds and facilitates prairie restoration. Ecological Applications 13:605–615.CrossRefGoogle Scholar
  15. Bonan, G. B., and Shugart, H. H. 1989. Environmental factors and ecological processes in boreal forests. Annual Review of Ecology and Systematics 20:1–28.CrossRefGoogle Scholar
  16. Bradshaw, A. D., and Chadwick, M. J. 1980. The Restoration of Land: The Ecology and Reclamation of Derelict and Degraded Land. Los Angeles: University of California Press.Google Scholar
  17. Brown, V. K., and Gange, A. C. 1990. Insect herbivory below ground. Advances in Ecological Research 20:1–58.Google Scholar
  18. Burney, D. A., and Flannery, T. F. 2005. Fifty millennia of catastrophic extinctions after human contact. Trends in Ecology and Evolution 20:395–401.PubMedCrossRefGoogle Scholar
  19. Callaway, R. M., Thelen, G. C., Barth, S., Ramsey, P. W., and Gannon, J. E. 2004a. Soil fungi alter interactions between the invader Centaurea maculosa and North American natives. Ecology 85:1062–1071.CrossRefGoogle Scholar
  20. Callaway, R. M., Thelen, G. C., Rodriquez, A., and Hoben, W. E. 2004b. Soil biota and exotic plant invasion. Nature 427:731–733.CrossRefGoogle Scholar
  21. Chapin, F. S., Walker, B. H., Hobbs, R. J., Hooper, D. U., Lawton, J. H., Sala, O. E., and Tilman, D. 1997. Biotic control over the functioning of ecosystems. Science 277:500–504.CrossRefGoogle Scholar
  22. Chen, C. R., Condron, L. M., Sinaj, S., Davis, M. R., Sherlock, R. R., and Frossard, E. 2003. Effects of plant species on phosphorus availability in a range of grassland soils. Plant and Soil 256:115–130.CrossRefGoogle Scholar
  23. Coleman, D. C., Reid, C. P. P., and Cole, C. V. 1983. Biological strategies of nutrient cycling in soil systems. Advances in Ecological Research 13:1–55.Google Scholar
  24. Compton, J. E., and Boone, R. D. 2000. Long term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81:2314–2330.Google Scholar
  25. Conway, M. J. 1949. Deer damage in a Nelson beech forest. New Zealand Journal of Forestry 6:66–67.Google Scholar
  26. Corbin, J. D., and D'Antonio, C. M. 2004. Can carbon addition increase competitiveness of native grasses? A case study from California. Restoration Ecology 12:36–43.CrossRefGoogle Scholar
  27. Daehler, C. C. 2003. Performance comparisons of co-occurring native and alien invasive plants: Implications for conservation and restoration. Annual Review of Ecology, Evolution and Systematics 34:183–211.CrossRefGoogle Scholar
  28. De Deyn, G. B., Raaijmakers, C. E., Zoomer, H. R., Berg, M. P., De Ruiter, P. C., Verhoef, H. A., Bezemer, T. M., and van der Putten, W. H. 2003. Soil invertebrate fauna enhances grassland succession and diversity. Nature 422:711–713.PubMedCrossRefGoogle Scholar
  29. De Deyn, G. B., Raaijmakers, C. E., van Ruijven, J., Berendse, F., and van der Putten, W. H. 2004. Plant species identity and diversity on different trophic levels of nematodes in the soil food web. Oikos 106:576–586.CrossRefGoogle Scholar
  30. De Luca, T. H., Nilsson, M.-C., and Zackrisson, O. 2002a. Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden. Oecologia 133:206–214.CrossRefGoogle Scholar
  31. De Luca, T. H., Zackrisson, O., Nilsson, M.-C., and Sellstedt, A. 2002b. Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917–920.CrossRefGoogle Scholar
  32. Díaz, S., Grime J. P, Harris, J., and McPherson, E. 1993. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364:616–617.CrossRefGoogle Scholar
  33. Dighton, J., and Mason, P. A. 1985. Mycorrhizal dynamics during forest tree development. In: Developmental Biology of Higher Fungi. D. Moore, L. A. Casselton, D. A. Wood, and J. C. Frankland (eds.). Cambridge: Cambridge University Press, pp. 117–139.Google Scholar
  34. Duncan, K. W., and Holdaway, R. N. 1989. Footprint pressures and locomotion of moas and ungulates and their effects on the New Zealand indigenous biota by trampling. New Zealand Journal of Ecology 12(supplement):97–101.Google Scholar
  35. Dunger, W., Schulz, H.-J., Zimdars, B., and Hohberg, K. 2004. Changes in collembolan species composition in eastern German mine sites over fifty years of primary succession. Pedobiologia 48:503–517.CrossRefGoogle Scholar
  36. Ehrenfeld, J. G. 2003. Ecosystem effects and causes of exotic species invasions. Ecosystems 6:503–523.CrossRefGoogle Scholar
  37. Ehrenfeld, J. G., Ravit, B., and Elgersma, K. 2005. Feedback in the plant-soil system. Annual Review of Environment and Resources 30:75–115.CrossRefGoogle Scholar
  38. Eviner, V. T., and Chapin, F. S., III. 2003. Functional matrix: A conceptual framework for predicting multiple plant effects on ecosystem processes. Annual Review of Ecology and Systematics 34:455–485.CrossRefGoogle Scholar
  39. Forsyth, D. M., Coomes, D. A., Nugent, G., and Hall, G. M. 2002. Diet and diet preferences of introduced ungulates (order: Artiodactyla) in New Zealand. New Zealand Journal of Zoology 29:323–343.CrossRefGoogle Scholar
  40. Forsyth, D. M., Richardson, S. J., and Menchenton, K. 2005. Foliar fibre predicts diet selection by invasive Red Deer (Cervus elaphus scoticus) in a temperate New Zealand forest. Functional Ecology 3:495–504.CrossRefGoogle Scholar
  41. Grime, J. P. 1979. Plant Strategies and Vegetation Processes. Chichester: Wiley.Google Scholar
  42. Hamilton, E. W., and Frank, D. A. 2001. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82:2397–2402.Google Scholar
  43. Herman, D. J., and Firestone, K. 2005. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecology Letters 8:976–985.CrossRefGoogle Scholar
  44. Hierro, J. L., Maron, J. L., and Callaway, R. M. 2005. A biogeographical approach to plant invasions: The importance of studying exotics in their introduced and native range. Journal of Ecology 93:5–15.CrossRefGoogle Scholar
  45. Hodkinson, I. D., Coulson, S. J., and Webb, N. R. 2004. Invertebrate community assembly across proglacial chronosequences in the high Arctic. Journal of Animal Ecology 73:556–568.CrossRefGoogle Scholar
  46. Hurtt, G. C., Pacala, S. W., Moorcroft, P. R., Caspersen, J., Shevliakova, E., Houghton, R., and Moore, B. 2002. Projecting the future of the US carbon sink. Proceedings of the National Academy of Sciences, U.S.A. 99:1389–1394.CrossRefGoogle Scholar
  47. Klironomos, J. N. 2002. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70.PubMedCrossRefGoogle Scholar
  48. Knevel, I. C., Lans, T., Menting, F. B. J., Hertling, U. M., and van der Putten, W. H. 2004. Release from native root herbivores and biotic resistance by soil pathogens in a new habitat both affect the alien Ammophila arenaria in South Africa. Oecologia 141:502–510.PubMedCrossRefGoogle Scholar
  49. Kourtev, P. S., Ehrenfeld, J. G., and Haggblom, M. 2003. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biology and Biochemistry 35:895–905.CrossRefGoogle Scholar
  50. Laakso, J., and Setälä, H. 1999. Sensitivity of primary production to changes in the architecture of belowground food webs. Oikos 87:57–64.CrossRefGoogle Scholar
  51. Lawton, J. H. 1994. What do species do in ecosystems? Oikos 71:367–374.CrossRefGoogle Scholar
  52. Levine, J. M., Vila, M., D'Antonio, C. M., Dukes, J. S., Grigulis, K., and Lavorel, S. 2003. Mechanisms underlying the impacts of exotic plant invasions. Proceedings of the Royal Society of London - Series B 270:775–781.PubMedCrossRefGoogle Scholar
  53. Liiri, M., Setälä, H., Haimi, J., Pennanen, T., and Fritze, H. 2002. Relationship between soil microarthropod species diversity and plant growth rates does not change when the system is disturbed. Oikos 96:138–150.CrossRefGoogle Scholar
  54. Lindsay, E. A., and French, K. 2005. Litterfall and nitrogen cycling following invasion by Chrysanthemoides monilifera ssp. rotundata in coastal Australia. Journal of Applied Ecology 42:556–566.CrossRefGoogle Scholar
  55. Luken, J. O., and Fonda, R. W. 1983. Nitrogen accumulation in a chronosequence of red alder communities along the Hoh River, Olympic National Park, Washington. Canadian Journal of Forest Research 13:1228–1237.Google Scholar
  56. Mack, R. N., Simberloff, D., Lonsdale, W. M., Evans, J., Clout, M., and Bazzaz. F. A. 2000. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecological Applications 10:689–710.CrossRefGoogle Scholar
  57. Matson, P. A. 1990. Plant-soil interactions in primary succession at Hawaii Volcanoes National Park. Oecologia 85:241–246.CrossRefGoogle Scholar
  58. McGlone, M. S., and Clarkson, B. D. 1993. Ghost stories: Moa, plant defenses and evolution in New Zealand. Tuatara 32:1–21.Google Scholar
  59. McLendon, T., and Redente, E. F. 1992. Effects of nitrogen limitation on species replacement dynamics during early succession on a semiarid sagebrush site. Oecologia 91:312–317.CrossRefGoogle Scholar
  60. McNaughton, S. J. 1985. Ecology of a grazing system: The Serengeti. Ecological Monographs 55:259–294.CrossRefGoogle Scholar
  61. McNaughton, S. J., Oesterheld, M., Frank, D. A., and Williams, K. J. 1989. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341:142–144.PubMedCrossRefGoogle Scholar
  62. Miki, T., and Kondoh, N. 2002. Feedbacks between nutrient cycling and vegetation predict plant species coexistence and invasion. Ecology Letters 5:624–633.CrossRefGoogle Scholar
  63. Mitchell, C. E., and Power, A. G. 2003. Release of invasive plants from fungal and viral pathogens. Nature 421:625–626.PubMedCrossRefGoogle Scholar
  64. Morghan, K. J. R., and Seastedt, T. R. 1999. Effects of soil nitrogen reduction on non-native plants in restored grasslands. Restoration Ecology 71:51–55.CrossRefGoogle Scholar
  65. Morris, W. F., and Wood, D. M. 1989. The role of lupine in Mt. St. Helens: Facilitation or inhibition? Ecology 70:697–703.CrossRefGoogle Scholar
  66. Myers, J. H., and Bazely, D. R. 2003. Ecology and Control of Introduced Plants. Cambridge: Cambridge University Press.Google Scholar
  67. Niklasson, M., and Granström, A. 2000. Numbers and sizes of fires: Long term spatially explicit fire history in a Swedish boreal landscape. Ecology 81:1484–1499.Google Scholar
  68. Niklasson, M., and Granström, A. 2004. Fire in Sweden — history, research, prescribed burning and forest certification. International Forest Fire News 30:80–83.Google Scholar
  69. Nilsson, M. C., and Wardle, D. A. 2005. Understory vegetation as a forest ecosystem driver: Evidence from the northern Swedish boreal forest. Frontiers in Ecology and the Environment 3:421–428.CrossRefGoogle Scholar
  70. Odum, E. P. 1969. The strategy of ecosystem development. Science 164:262–270.PubMedCrossRefGoogle Scholar
  71. Ohtonen, R., Fritze, H., Pennanen, T., Jumpponen, A., and Trappe, J. 1999. Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia 119:239–246.CrossRefGoogle Scholar
  72. Packer, A., and Clay, K. 2004. Development of negative feedback during successive growth cycles of black cherry. Proceedings of the Royal Society of London 271:317–324.CrossRefGoogle Scholar
  73. Pastor, J., Dewey, B., Naiman, R. J., McInnes, P. F., and Cohen, Y. 1993. Moose browsing and soil fertility in the boreal forests of Isle Royale National Park. Ecology 74:467–480.CrossRefGoogle Scholar
  74. Pimentel, D., Lach, L., Zuniga, R., and Morrison, D. 2000. Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–65.CrossRefGoogle Scholar
  75. Porazinska, D. L., Bardgett, R. D., Blaauw, M. B., Hunt, H. W., Parsons, A. N., Seastedt, T. R., and Wall, D. H. 2003. Relationships at the aboveground-belowground interface: Plants, soil biota and soil processes. Ecological Monographs 73:377–395.CrossRefGoogle Scholar
  76. Rastetter, E. B., Aber, J. D., Peter, D. P. C., Ojima, D. S., and Burke, I. C. 2003. Using mechanistic models to scale ecological processes across space and time. BioScience 53:68–76.CrossRefGoogle Scholar
  77. Reinhart, K. O., Packer, A., van der Putten, W. H., and Clay, K. 2003. Escape from natural soil pathogens enables a North American tree to invade Europe. Ecology Letters 6:1046–1050.CrossRefGoogle Scholar
  78. Richardson, D. M., Allsopp, N., D'Antonio, C. M., Milton, S. J., and Rejmánek, M. 2000. Plant invasions — the role of mutualisms. Biological Reviews 75:65–93.PubMedCrossRefGoogle Scholar
  79. Sankaran, M., and Augustine, D. 2004. Large herbivores suppress decomposer abundance in a semi-arid grazing ecosystem. Ecology 85:1052–1061.CrossRefGoogle Scholar
  80. Schimel, D. S. 1995. Terrestrial ecosystems and the carbon cycle. Global Change Biology 1:77–91.CrossRefGoogle Scholar
  81. Schlesinger, W. H., Bruijnzeel, L. A., Bush, M. B., Klein, E. M., Mace, K.A., Raikes J A., and Whittaker, R. J. 1998. The biogeochemistry of phosphorus after the first century of soil development on Rakata Island, Krakatau, Indonesia. Biogeochemistry 40:37–55.CrossRefGoogle Scholar
  82. Seastedt, T. R. 2000. Soil fauna and controls of carbon dynamics: Comparisons of rangelands and forests across latitudinal gradients. In: Invertebrates as Webmasters in Ecosystems. P. F. Hendrix and D. C. Coleman (eds.). Wallingford: CAB International, pp. 293–312.Google Scholar
  83. Sigler, W. V., and Zeyer, J. 2002. Microbial diversity and activity along the forefields of two receding glaciers. Microbial Ecology 43:397–407.PubMedCrossRefGoogle Scholar
  84. Stampe, E. D., and Daehler, C. C. 2003. Mycorrhizal species identity affects plant community structure and invasion: A microcosm study. Oikos 100:362–372.CrossRefGoogle Scholar
  85. Suding, K. N., Gross, K. L., and Houseman, G. R. 2004. Alternative states and positive feedbacks in restoration ecology. Trends in Ecology and Evolution 19:46–53.PubMedCrossRefGoogle Scholar
  86. Van der Heijden, M., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemkin, A., and Sanders, I. R. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72.CrossRefGoogle Scholar
  87. van der Putten, W. H. 2005. Plant-soil feedback and soil biodiversity affect the composition of soil communities. In: Biological Diversity and Function in Soils. R. D. Bardgett, M. B. Usher, and D. W. Hopkins (eds.). Cambridge: Cambridge University Press, pp. 250–272.Google Scholar
  88. van der Putten, W. H., Van Dijk, C., and Peters, B. A. M. 1993. Plant specific soil borne diseases contribute to succession in foredune vegetation. Nature 363:53–56.CrossRefGoogle Scholar
  89. van der Putten, W. H., Vet, L. E. H., Harvey, J. H., and Wackers, F. L. 2001. Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens and their antagonists. Trends in Ecology and Evolution 16:547–554.CrossRefGoogle Scholar
  90. Verhoeven, R. 2002. The structure of the microtrophic system in a development series of dune sands. Pedobiologia 46:75–89.CrossRefGoogle Scholar
  91. Vitecroft, M., Palmborg, C., Sohlenius, B., Huss-Danell, K., and Bengtsson, J. 2005. Plant species effects on soil nematode communities in experimental grasslands. Applied Soil Ecology 30:90–103.CrossRefGoogle Scholar
  92. Vitousek, P. M. 2004. Nutrient Cycling and Limitation: Hawai'i as a Model System. Princeton: Princeton University Press.Google Scholar
  93. Vitousek, P. M., Walker, L. R., Whiteaker, L. D., Mueller-Dombois, D., and Matson, P. A. 1987. Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238:802–804.PubMedCrossRefGoogle Scholar
  94. Walker, L. R., and Chapin, F. S., III. 1987. Interactions among processes controlling successional change. Oikos 50:131–135.CrossRefGoogle Scholar
  95. Walker, L. R., and del Moral, R. 2003. Primary Succession and Ecosystem Rehabilitation. Cambridge: Cambridge University Press.Google Scholar
  96. Walker, T. W., and Syers, J. K. 1976. The fate of phosphorus during pedogenesis. Geoderma 15:1–19.CrossRefGoogle Scholar
  97. Wallis, F. P., and James, I. L. 1972. Introduced animal effects and erosion phenomena in the northern Urewera forest. New Zealand Journal of Forestry 17:21–36.Google Scholar
  98. Wardle, D. A. 2002. Communities and Ecosystems: Linking the Aboveground and Belowground Components. Princeton: Princeton University Press.Google Scholar
  99. Wardle, D. A., and Bardgett, R. D. 2004. Human-induced changes in densities of large herbivorous mammals: Consequences for the decomposer subsystem. Frontiers in Ecology and the Environment 2:145–153.CrossRefGoogle Scholar
  100. Wardle, D. A., and Zackrisson, O. 2005. Effects of species and functional group loss on island ecosystem properties. Nature 435:806–810.PubMedCrossRefGoogle Scholar
  101. Wardle, D. A., Zackrisson, O., Hörnberg, G., and Gallet, C. 1997. Influence of island area on ecosystem properties. Science 277:1296–1299.CrossRefGoogle Scholar
  102. Wardle. D. A., Barker, G. M., Bonner, K. I., and Nicholson, K. S. 1998. Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? Journal of Ecology 86:405–420.CrossRefGoogle Scholar
  103. Wardle, D. A., Bonner, K. I., Barker, G. M., Yeates, G. W., Nicholson, K. S., Bardgett, R. D., Watson, R. N., and Ghani, A. 1999. Plant removals in perennial grassland: Vegetation dynamics, decomposers, soil biodiversity and ecosystem properties. Ecological Monographs 69:535–568.Google Scholar
  104. Wardle, D. A., Barker, G. M., Yeates, G. W., Bonner, K. I., and Ghani, A. 2001. Introduced browsing mammals in natural New Zealand forests: Aboveground and belowground consequences. Ecological Monographs 71:587–614.CrossRefGoogle Scholar
  105. Wardle, D. A., Bonner, K. I., and Barker, G. M. 2002. Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Functional Ecology 16:585–595.CrossRefGoogle Scholar
  106. Wardle, D. A., Hörnberg, G., Zackrisson, O., Kalela-Brundin, M., and Coomes, D. A. 2003. Long term effects of wildfire on ecosystem properties across an island area gradient. Science 300:972–975.PubMedCrossRefGoogle Scholar
  107. Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., van der Putten, W. H., and Wall, D. H. 2004a. Ecological linkages between aboveground and belowground biota. Science 304:1629–1633.CrossRefGoogle Scholar
  108. Wardle, D. A., Walker, L. R., and Bardgett, R. D. 2004b. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513.CrossRefGoogle Scholar
  109. Wasilewska, L. 1994. The effect of age of meadows on succession and diversity in soil nematode communities. Pedobiologia 38:1–11.Google Scholar
  110. Weir, B. S., Turner, S. J., Silvester, W. B., Park, D.-C., and Young, J. M. 2004. Unexpectedly diverse Mesorhizobium strains and Rhizobium leguminosarum nodulate native legume genera of New Zealand, while introduced legume weeds are nodulated by Bradyrhizobium species. Applied and Environmental Microbiology 70:5980–5987.PubMedCrossRefGoogle Scholar
  111. Wilson, J. B., and Agnew, A. D. Q. 1992. Positive-feedback switches in plant communities. Advances in Ecological Research 23:263–336.CrossRefGoogle Scholar
  112. Wilson, S.D. 2002. Prairies. Handbook of Ecological Restoration. A. J. Davy and M. R. Perrow (eds.). Cambridge University Press, Cambridge, pp. 443–465.Google Scholar
  113. Wolfe, B. E., and Klironomos, J. N. 2005. Breaking new ground: Soil communities and exotic plant invasion. BioScience 55:477–487.CrossRefGoogle Scholar
  114. Yelenik, S. G., Stock, W. D., and Richardson, D. M. 2004. Ecosystem level impacts of invasive Acacia saligna in the South African fynbos. Restoration Ecology 12:44–51.CrossRefGoogle Scholar
  115. Yurkonis, K. A., Meiners, S. J., and Wachholder, B. E. 2005. Invasion impacts diversity through altered community dynamics. Journal of Ecology 93:1053–1061.CrossRefGoogle Scholar
  116. Young, T. P., Petersen, D. A., and Clary, J. J. 2005. The ecology of restoration: Historical links, emerging issues and unexplored realms. Ecology Letters 8:662–673.CrossRefGoogle Scholar
  117. Zabinski, C.A., Quinn, L., and Callaway, R.M. 2002. Phosphorus uptake, not carbon transfer, explains arbuscular mycorrhizal enhancement of Centaurea maculosa in the presence of native grassland species. Functional Ecology 16:758–765.CrossRefGoogle Scholar
  118. Zackrisson, O., Nilsson, M.-C., and Wardle, D. A. 1996. Key ecological function of charcoal from wildfire in the boreal forest. Oikos 77:10–19.CrossRefGoogle Scholar
  119. Zimov, S. A., Chuprynin, V. I., and Oreshko, A. P. 1995. Steppe–tundra transition: A herbivore-driven biome shift at the end of the Pleistocene. The American Naturalist 146:765–794.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • David A. Wardle
  • Duane A. Peltzer

There are no affiliations available

Personalised recommendations