Advertisement

Towards a Compositional Interpretation of Object Diagrams

  • J. C. Bicarregui
  • K. C. Lano
  • T. S. E. Maibaum
Chapter
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT)

Abstract

We develop a compositional interpretation of object model and statechart diagrams as used in the “Syntropy” method of Object-Oriented Analysis and Design. Separate theories are constructed for object instances, class managers and associations which are then combined with categorical constructions to yield a formal interpretation of the complete system.

We compare the use of state attributes to abstractly interpret history with temporal axioms governing behaviours and contrast the logical notion of locality with object-oriented data encapsulation. We consider the interpretation of statecharts partitioning the overall statespace and defining transitions between partitions and give a formal interpretation to event parameters, filters, preconditions and postconditions. We observe that some features of Syntropy are not amenable to this systematic modular interpretation.

Keywords

Formal methods modular specification object-oriented OO Syntropy object calculus action logic temporal logic encapsulation. 

References

  1. Cook, S. and Daniels, J. (1994) Designing Object Systems with Syntropy. Prentice Hall.zbMATHGoogle Scholar
  2. Fiadeiro, J. and Maibaum, T. (1992) Temporal Theories and Modularisation Units for Concurrent System Specification. Formal Aspects of Computing, Vol.4, No. 3, pp. 239–272. Springer Verlag.zbMATHCrossRefGoogle Scholar
  3. Fiadeiro, J. and Maibaum, T. (1991) Describing, Structuring and Implementing Objects, in de Bakker et al., Foundations of Object Oriented languages, LNCS 489, Springer-Verlag, 1991.Google Scholar
  4. Goguen, J. and Burstall, R. (1984) Introducing Institutions, In Clarke and Kozen, eds. Logics of Programs, pp. 221–256, Springer-Verlag.CrossRefGoogle Scholar
  5. Harel, D. (1987) Statecharts: A Visual Formalism for Complex Systems, Sci. Comput. Prog. 8 pp. 231–274.zbMATHMathSciNetCrossRefGoogle Scholar
  6. Lamport, L. (1991) The Temporal Logic of Actions, Digital Technical Report 79, Systems Research Center, 130 Lytton Avenue, Palo Alto, California 94301. December 25th.Google Scholar
  7. Rumbaugh, J. et al (1991) Objeci-Oriented Modelling and Design, Prentice-Hall, Englewoods Cliffs, New Jersey.Google Scholar
  8. Spivey, M.(1989) The Z Notation: a Reference Manual, Prentice-Hall.zbMATHGoogle Scholar

Copyright information

© IFIP 1997

Authors and Affiliations

  • J. C. Bicarregui
    • 1
  • K. C. Lano
    • 1
  • T. S. E. Maibaum
    • 1
  1. 1.Department of ComputingImperial College of Science, Technology and MedicineLondonUK

Personalised recommendations