Skip to main content

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 40))

  • 1958 Accesses

Abstract

The effective Hamiltonian (4.14.1) for many-electron atoms and molecules is

$$ H = \sum\limits_{i = 1}^N {h_i + \sum\limits_{i < j} {g_{ij} ,} } $$
((6.1.1))

where h i is the one-electron Dirac Hamiltonian for a bare nucleus for electron i and g ij = 1/R ij + g B(R ij ) represents the interaction energy of electrons i and j. In most applications, the central core of the atom is dominated by electrons in spherically symmetric closed shells, so that we expect an independent particle central field model to be a good starting point. This motivates the use of wavefunctions for atoms and molecules built from anti-symmetrized products of one-electron central field wavefunctions. The theory of electronic structure of isolated complex atoms is dominated by applications of angular momentum algebra, Appendix B.3, exploiting the fact that such systems can have no preferred orientation. Angular momentum theory can only play a subordinate role in molecules where, away from the nuclei, the electrons move in a nonspherical force-field shaped by the nuclear skeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grant I P 1970 Adv. Phys. 19 747.

    Article  ADS  Google Scholar 

  2. Grant I P 1961 Proc Roy Soc (Lond) A 262 555.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Grant I P 1965 Proc. Phys. Soc. 86, 523.

    Article  MathSciNet  ADS  Google Scholar 

  4. Grant I P and Pyper N C 1976 J. Phys. B: Atom. Molec. Phys. 9 761.

    Article  ADS  Google Scholar 

  5. Grant I P, McKenzie B J, Norrington P H, Mayers DF and Pyper N C 1980 Comput. Phys. Commun. 21, 207.

    Article  ADS  Google Scholar 

  6. Grant I P 1988 in Methods in Computational Chemistry Vol 2: Relativistic effects in atoms and molecules, ed. S WilsonS 1988 (New York: Plenum) [49], pp. 1.

    Google Scholar 

  7. de Shalit A and Talmi I 1963 Nuclear Shell Theory (New York: Academic Press).

    Google Scholar 

  8. Inglis D R 1931 Phys. Rev. 38, 162.

    ADS  Google Scholar 

  9. Condon E U and Shortley G H 1953 The Theory of Atomic Spectra (Cambridge: University Press).

    Google Scholar 

  10. Judd B R 1967 Second Quantization and Atomic Spectroscopy (Baltimore: The Johns Hopkins Press).

    Google Scholar 

  11. Racah G 1942 Phys Rev 61 186; — 1942 Phys Rev 62 438; — 1943 Phys Rev 63 367; — 1949 Phys Rev 76 1352.

    Article  ADS  Google Scholar 

  12. Gaunt J A Proc. Roy. Soc. A 122 513.

    Google Scholar 

  13. Swirles B 1935 Proc Roy Soc (Lond) A 152 625; — 1936 Proc Roy Soc (Lond) A 157 680.

    Article  MATH  ADS  Google Scholar 

  14. Jacobsohn B A 1947 Thesis, University of Chicago (unpublished).

    Google Scholar 

  15. Grant I P and McKenzie B J 1980 J. Phys. B: Atom. Molec. Phys. 13 2671.

    Article  ADS  MathSciNet  Google Scholar 

  16. Abramowitz M and Stegun I A 1970 Handbook of Mathematical Functions (New York: Dover).

    Google Scholar 

  17. Judd B R 1963 Operator Techniques in Atomic Spectroscopy (New York: McGraw-Hill).

    Google Scholar 

  18. MØller C 1932 Ann. der Phys. 14 531.

    Article  MATH  Google Scholar 

  19. Doyle H T 1969 Adv. Atom. Molec. Phys. 5, 337.

    Article  Google Scholar 

  20. Mann J B and Johnson W R 1971 Phys. Rev. A 4, 41.

    Article  ADS  Google Scholar 

  21. Huang K-N 1979 Rev. Mod. Phys. 51, 215.

    Article  ADS  Google Scholar 

  22. Pyper N C and Grant I P 1978 Proc. Roy. Soc. A 359, 525.

    Article  ADS  Google Scholar 

  23. Lindgren I and Rosén A 1974 Case Studies in Atomic Physics 4, 93.

    Google Scholar 

  24. Slater J C 1960 Quantum theory of atomic structure, Vol. 1. (New York: McGraw-Hill).

    MATH  Google Scholar 

  25. Desclaux J P, Moser C M and Verhaegen G 1971 J. Phys. B: Atom. Molec. Phys. 4, 296.

    Article  ADS  Google Scholar 

  26. Larkins F P 1976 J. Phys. B: Atom. Molec. Phys. 9, 37.

    Article  ADS  Google Scholar 

  27. Fischer C F 1977 The Hartree-Fock Method for Atoms (New York: John Wiley).

    Google Scholar 

  28. Hartree D R 1957 The calculation of atomic structures, (New York: John Wiley).

    MATH  Google Scholar 

  29. Judd B R and Elliott J P 1970 Topics in Atomic and Nuclear Theory (University of Canterbury, New Zealand).

    Google Scholar 

  30. Wybourne B G 1974 Classical Groups for Physicists (New York: John Wiley).

    MATH  Google Scholar 

  31. Hamermesh M, 1962 Group Theory (Reading, Mass.: Addison-Wesley Publishing Co. Inc.).

    Google Scholar 

  32. Flowers B H and Szpikowski S 1964 Proc. Phys. Soc. (Lond.) 84, 193.

    Article  MathSciNet  ADS  Google Scholar 

  33. Lawson R D and Macfarlane M H 1965 Nuclear Phys. 66, 80.

    Article  MathSciNet  ADS  Google Scholar 

  34. Redmond P J 1954 Proc Roy Soc A 222, 84.

    ADS  Google Scholar 

  35. Hassitt A 1955 Proc Roy Soc A 229, 110.

    ADS  Google Scholar 

  36. Edmonds A R and Flowers B H 1952 Proc Roy Soc A 214, 515.

    ADS  Google Scholar 

  37. de-Shalit A and Talmi I 1963 Nuclear Shell Theory (New York: Academic Press).

    Google Scholar 

  38. Sivcev V I, Slepcov A A, Kičkin, Rudzikas Z B 1974 Liet. fiz. rink., Lit. fiz. sb. 14, 189.

    Google Scholar 

  39. Grant I P 1972 Comput Phys Commun 4, 377.

    Article  ADS  Google Scholar 

  40. Grant I P 1972 Comput Phys Commun 14, 311.

    Google Scholar 

  41. Cowan R D 1981 The Theory of Atomic Structure and Spectra (Berkeley: University of California Press).

    Google Scholar 

  42. Zenonas Rudzikas 1997 Theoretical Atomic Spectroscopy (Cambridge: University Press).

    Book  Google Scholar 

  43. Judd B R 1996 in [50, Chapter 3].

    Google Scholar 

  44. Martin W C and Wiese W L 1996 in [50, Chapter 10].

    Google Scholar 

  45. Condon E U and Odabasi H 1980 Atomic Structure (Cambridge: University Press).

    Google Scholar 

  46. Hartree D R, Hartree W and Swirles B 1939 Phil. Trans. Roy. Soc. Lond. 238, 229.

    Article  ADS  Google Scholar 

  47. Grant I P, Mayers D F and Pyper N C 1976 J. Phys. B 9, 2777.

    Article  ADS  Google Scholar 

  48. Bar-Shalom A and Klapisch M 1988 Comput. Phys. Commun. 50, 375.

    Article  ADS  Google Scholar 

  49. Wilson S ed 1988 Methods in Computational Chemistry Vol 2: Relativistic effects in atoms and molecules (New York: Plenum).

    Google Scholar 

  50. Drake G W F ed 2005 Springer Handbook of Atomic, Molecular and Optical Physics Second edn (New York: Springer-Verlag).

    Google Scholar 

  51. Fischer C F 1986 Computer Physics Reports 3, no. 5, 273.

    Article  ADS  Google Scholar 

  52. Fischer C F, Guo W and Shen Z 1992 Int. J. Quant. Chem. 42, 849.

    Article  Google Scholar 

  53. Qiu Y and Fischer C F 1999 J. Comput. Phys. 156, 257.

    Article  MATH  ADS  Google Scholar 

  54. Froese Fischer C and Idrees M 1990 J. Phys. B: At. Mol. Phys. 23, 679.

    Article  ADS  Google Scholar 

  55. Fischer C F 1991 Int. J. Supercom. Appl. 5, 5.

    Article  Google Scholar 

  56. Bar-Shalom A, Klapisch M and Oreg J 1988 Phys. Rev. A 38, 1773.

    Article  ADS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Complex atoms. In: Grant, I.P. (eds) Relativistic Quantum Theory of Atoms and Molecules. Springer Series on Atomic, Optical, and Plasma Physics, vol 40. Springer, New York, NY. https://doi.org/10.1007/978-0-387-35069-1_6

Download citation

Publish with us

Policies and ethics