Advertisement

Mechanisms of Sleep Apnea at Altitude

  • William Whitelaw
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 588)

Abstract

At altitude normal people often develop periodic breathing in sleep - regularly recurring periods of hyperpnea and apnea. This phenomenon is probably explained by instability of the negative feedback system for controlling ventilation. Such systems can be modeled by sets of differential equations that describe behavior of key components of the system and how they interact. Mathematical models of the breathing control system have increased in complexity and the accuracy with which they simulate human physiology. Recent papers by Zbigniew Topor et al. (5,6) describe a model with two separate feedback loops, one simulating peripheral and the other central chemoreceptor reflexes, as well as accurate representations of blood components, circulatory loops and brain blood flow. This model shows unstable breathing when one chemoreceptor loop has high gain while the other has low gain, but not when both have high gain. It also behaves in counter-intuitive way by becoming more stable when brain blood flow is reduced and unresponsive to blood. gas changes. Insights from such models may bring us closer to understanding high altitude periodic breathing.

Key Words

mathematical modeling central apnea unstable control systems chemoreceptor feedback 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berssenbrugge A, Dempsey J, Iber C, Skatrud J, and Wilson P. Mechanisms of hypoxia-induced periodic breathing during sleep in humans. J. Physiol. 343:507–524, 1983PubMedGoogle Scholar
  2. 2.
    Cherniack NS, and Longobardo GS. Cheyne-Stokes breathing ? an instability in physiological control. N. Engl. J. Med. 288:952–957, 1973PubMedCrossRefGoogle Scholar
  3. 3.
    Dempsey JA. Crossing the apnoeic threshold: causes and consequences. Exp. Physiol. 90.1:13–24, 2004PubMedCrossRefGoogle Scholar
  4. 4.
    Khoo MCK, Anholm JD, Ko S-W, Downey III R, Powles PAC, Sutton JR, and Houston CS. Dynamics of periodic breathing and arousal during sleep at extreme altitude. Respir Physiol. 103:33–43Google Scholar
  5. 5.
    Topor ZL, Pawlicki M, and Remmers JE. A computational model of the human respiratory control system: responses to hypoxia and hypercapnia. Annals of Biomedical Engineering 32(11): 1530–1545, 2004PubMedCrossRefGoogle Scholar
  6. 6.
    Topor ZL, Vasilakos K, and Remmers JE. Interaction of two chemoreflex loops in determining ventilatory stability. Nonlinear Studies 11(3):527–541, 2004Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • William Whitelaw
    • 1
  1. 1.Department of MedicineUniversity of CalgaryCalgaryCanada

Personalised recommendations