Salvage Of Ischemic Myocardium: A Focus on JNK

  • Hervé Duplain
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 588)


Myocardial infarction is a problem of utmost clinical significance, associated with an important morbidity and mortality. Actual treatment of this affection is focusing on the reperfusion of the occluded coronary-artery. A complementary approach would be to prevent the death of the ischemic myocardium by interacting with detrimental intracellular pathways. Several strategies have been successfully used to reduce the size of myocardial infarction in animal models. In this article, we will focus on the c-Jun N-terminal kinase (JNK), a member of the mitogen-activated (MAPK) protein kinase family and an important determinant of cell survival/death. We will review the role of JNK in cardiac ischemia/reperfusion and summarize recent advances in the use of JNK inhibitors to protect the myocardium.

Key Words

myocardial infarction ischemia/reperfusion treatment JNK MAPK 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anonymous, Neglected Global Epidemics: three growing threats. In: World Health Report 2003, World Health Organization, 2003, p. 83–102.Google Scholar
  2. 2.
    Anonymous, Coronary Heart Disease, Acute Coronary Syndrome and Angina Pectoris. In: Heart Disease and Stroke Statistics-2005 Update, American Heart Association, 2005, p. 10–16.Google Scholar
  3. 3.
    Aoki H, Kang PM, Hampe J, Yoshimura K, Noma T, Matsuzaki M and Izumo S. Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes. J Biol Chem 277: 10244–10250, 2002.PubMedCrossRefGoogle Scholar
  4. 4.
    Apstein CS. The benefits of glucose-insulin-potassium for acute myocardial infarction (and some concerns). J Am Coll Cardiol 42: 792–795, 2003.PubMedCrossRefGoogle Scholar
  5. 5.
    Bogoyevitch MA, Gillespie-Brown J, Ketterman AJ, Fuller SJ, Ben Levy R, Ashworth A, Marshall CJ and Sugden PH. Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circ Res 79: 162–173, 1996.PubMedGoogle Scholar
  6. 6.
    Bonny C, Oberson A, Negri S, Sauser C and Schorderet DF. Cell-permeable peptide inhibitors of JNK: novel blockers of beta-cell death. Diabetes 50: 77–82, 2001.PubMedCrossRefGoogle Scholar
  7. 7.
    Borsello T, Clarke PG, Hirt L, Vercelli A, Repici M, Schorderet DF, Bogousslavsky J and Bonny C. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 9: 1180–1186, 2003.PubMedCrossRefGoogle Scholar
  8. 8.
    Braunwald E. Editorial: Reduction of myocardial-infarct size. N EnglJ Med 291: 525–526, 1974.CrossRefGoogle Scholar
  9. 9.
    Brocheriou V, Hagege AA, Oubenaissa A, Lambert M, Mallet VO, Duriez M, Wassef M, Kahn A, Menasche P and Gilgenkrantz H. Cardiac functional improvement by a human Bcl-2 transgene in a mouse model of ischemia/reperfusion injury. J Gene Med 2: 326–333, 2000.PubMedCrossRefGoogle Scholar
  10. 10.
    Calvillo L, Latini R, Kajstura J, Leri A, Anversa P, Ghezzi P, Salio M, Cerami A and Brines M. Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci U S A 100: 4802–4806, 2003.PubMedCrossRefGoogle Scholar
  11. 11.
    Cook SA, Sugden PH and Clerk A. Activation of c-Jun N-terminal kinases and p38-mitogen-activated protein kinases in human heart failure secondary to ischaemic heart disease. J Mol Cell Cardiol 31: 1429–1434, 1999.PubMedCrossRefGoogle Scholar
  12. 12.
    Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell 103: 239–252, 2000.PubMedCrossRefGoogle Scholar
  13. 13.
    Donovan N, Becker EB, Konishi Y and Bonni A. JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J Biol Chem 277: 40944–40949, 2002.PubMedCrossRefGoogle Scholar
  14. 14.
    Dougherty CJ, Kubasiak LA, Frazier DP, Li H, Xiong WC, Bishopric NH and Webster KA. Mitochondrial signals initiate the activation of c-Jun N-terminal kinase (JNK) by hypoxia-reoxygenation. FASEB J 18: 1060–1070, 2004.PubMedCrossRefGoogle Scholar
  15. 15.
    Dougherty CJ, Kubasiak LA, Prentice H, Andreka P, Bishopric NH and Webster KA. Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress. Biochem J362: 561–571, 2002.PubMedCrossRefGoogle Scholar
  16. 16.
    Duplain, H, Cook, S., Mathieu, C, Bonny, C, Scherrer, U., and Nicod, P. Myocardial Salvage through a Novel Peptidic c-Jun NH2-terminal kinase inhibitor (Abstract) Circulation 110(suppl). 2004.Google Scholar
  17. 17.
    Ferrandi C, Ballerio R, Gaillard P, Giachetti C, Carboni S, Vitte PA, Gotteland JP and Cirillo R. Inhibition of c-Jun N-terminal kinase decreases cardiomyocyte apoptosis and infarct size after myocardial ischemia and reperfusion in anaesthetized rats. Br J Pharmacol 142: 953–960, 2004.PubMedCrossRefGoogle Scholar
  18. 18.
    Fliss H and Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res 79: 949–956, 1996.PubMedGoogle Scholar
  19. 19.
    Fujimoto H, Ohno M, Ayabe S, Kobayashi H, Ishizaka N, Kimura H, Yoshida K and Nagai R. Carbon monoxide protects against cardiac ischemia-reperfusion injury in vivo via MAPK and Akt-eNOS pathways. Arterioscler Thromb Vasc Biol 24: 1848–1853, 2004.PubMedCrossRefGoogle Scholar
  20. 20.
    He H, Li HL, Lin A and Gottlieb RA. Activation of the JNK pathway is important for cardiomyocyte death in response to simulated ischemia. Cell Death Differ 6: 987–991, 1999.PubMedCrossRefGoogle Scholar
  21. 21.
    Hreniuk D, Garay M, Gaarde W, Monia BP, McKay RA and Cioffi CL. Inhibition of c-Jun N-terminal kinase 1, but not c-Jun N-terminal kinase 2, suppresses apoptosis induced by ischemia/reoxygenation in rat cardiac myocytes. Mol Pharmacol 59: 867–874, 2001.PubMedGoogle Scholar
  22. 22.
    Knight RJ and Buxton DB. Stimulation of c-Jun kinase and mitogen-activated protein kinase by ischemia and reperfusion in the perfused rat heart. Biochem Biophys Res Commun 218: 83–88, 1996.PubMedCrossRefGoogle Scholar
  23. 23.
    Knowlton KU and Duplain H. Viral infections of the heart. In: Molecular Basis of Cardiovascular Disease, edited by Chien KR. Philadelphia: Saunders, 2004, p. 667–683.Google Scholar
  24. 24.
    Li WG, Coppey L, Weiss RM and Oskarsson HJ. Antioxidant therapy attenuates JNK activation and apoptosis in the remote noninfarcted myocardium after large myocardial infarction. Biochem Biophys Res Commun 280: 353–357, 2001.PubMedCrossRefGoogle Scholar
  25. 25.
    Matsui T, Tao J, del Monte F, Lee KH, Li L, Picard M, Force TL, Franke TF, Hajjar RJ and Rosenzweig A. Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation 104: 330–335, 2001.PubMedGoogle Scholar
  26. 26.
    Mehta SR, Yusuf S, Diaz R, Zhu J, Pais P, Xavier D, Paolasso E, Ahmed R, Xie C, Kazmi K, Tai J, Orlandini A, Pogue J and Liu L. Effect of glucose-insulin-potassium infusion on mortality in patients with acute ST-segment elevation myocardial infarction: the CREATE-ECLA randomized controlled trial. JAMA 293: 437–446, 2005.PubMedCrossRefGoogle Scholar
  27. 27.
    Naito Z, Kudo M, Xu G, Nishigaki R, Yokoyama M, Yamada N and Asano G. Immunohistochemical localization of mitogen-activated protein kinase (MAPK) family and morphological changes in rat heart after ischemia-reperfusion injury. Med Electron Microsc 33: 74–81, 2000.PubMedCrossRefGoogle Scholar
  28. 28.
    Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW and Khaw BA. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335: 1182–1189, 1996.PubMedCrossRefGoogle Scholar
  29. 29.
    Negri S, Oberson A, Steinmann M, Sauser C, Nicod P, Waeber G, Schorderet DF and Bonny C. cDNA cloning and mapping of a novel islet-brain/JNK-interacting protein. Genomics 64: 324–330, 2000.PubMedCrossRefGoogle Scholar
  30. 30.
    Petrich BG, Elorff BC, Lerner DL, Kovacs A, Saffitz JE, Rosenbaum DS and Wang Y. Targeted activation of c-Jun N-terminal kinase in vivo induces restrictive cardiomyopathy and conduction defects. JBiol Chem 279: 15330–15338, 2004.CrossRefGoogle Scholar
  31. 31.
    Renaud S and de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339: 1523–1526, 1992.PubMedCrossRefGoogle Scholar
  32. 32.
    Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M and Voipio-Pulkki LM. Apoptosis in human acute myocardial infarction. Circulation 95: 320–323, 1997.PubMedGoogle Scholar
  33. 33.
    Sato M, Bagchi D, Tosaki A and Das DK. Grape seed proanthocyanidin reduces cardiomyocyte apoptosis by inhibiting ischemia/reperfusion-induced activation of JNK-1 and C-JUN. Free Radic Biol Med 31: 729–737, 2001.PubMedCrossRefGoogle Scholar
  34. 34.
    Shimizu N, Yoshiyama M, Omura T, Hanatani A, Kim S, Takeuchi K, Iwao H and Yoshikawa J. Activation of mitogen-activated protein kinases and activator protein-1 in myocardial infarction in rats. Cardiovasc Res 38: 116–124, 1998.PubMedCrossRefGoogle Scholar
  35. 35.
    Thornberry NA and Lazebnik Y. Caspases: enemies within. Science 281: 1312–1316, 1998.PubMedCrossRefGoogle Scholar
  36. 36.
    Wayman NS, Hattori Y, McDonald MC, Mota-Filipe H, Cuzzocrea S, Pisano B, Chatterjee PK and Thiemermann C. Ligands of the peroxisome proliferator-activated receptors (PPAR-gamma and PPAR-alpha) reduce myocardial infarct size. FASEB J 16: 1027–1040, 2002.PubMedCrossRefGoogle Scholar
  37. 37.
    Widmann C, Gibson S, Jarpe MB and Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79: 143–180, 1999.PubMedGoogle Scholar
  38. 38.
    Xu K, Tavernarakis N and Driscoll M. Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca(2+) release from the endoplasmic reticulum. Neuron 31: 957–971, 2001.PubMedCrossRefGoogle Scholar
  39. 39.
    Yamamoto K, Ichijo H and Korsmeyer SJ. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 19: 8469–8478, 1999.PubMedGoogle Scholar
  40. 40.
    Yue TL, Ma XL, Wang X, Romanic AM, Liu GL, Louden C, Gu JL, Kumar S, Poste G, Ruffolo RR, Jr. and Feuerstein GZ. Possible involvement of stress-activated protein kinase signaling pathway and Fas receptor expression in prevention of ischemia/ reperfusion-induced cardiomyocyte apoptosis by carvedilol. Circ Res 82: 166–174, 1998PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Hervé Duplain
    • 1
  1. 1.Department of Internal Medicine and Botnar Center for Clinical ResearchCentre Hospitalier Universitaire VaudoisLausanneSwitzerland

Personalised recommendations