JNK Pathway as Therapeutic Target to Prevent Degeneration in the Central Nervous System

  • Mariaelena Repici
  • Tiziana Borsello
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 588)


JNKs (c-Jun N-terminal kinases) are important transducing enzymes involved in many faces of cellular regulation such as gene expression, cell proliferation and programmed cell death. The activation of JNK pathway is critical for naturally occurring neuronal death during development as well as for pathological death of adult brain following different insults. In particular, JNKs play an important role in excitotoxicity and all related phenomena. Initial research concentrated on defining the components and organization of JNK signalling cascades, but more recent studies have begun to see JNK as the appropriate target for prevent cell loss. We used a specific JNK inhibitor, the cell permeable peptide D-JNKI1, to block JNK action in neuronal death following excitotoxicity in vitro and cerebral ischemia in vivo. Here we review our recent findings and we discuss the possibility of using D-JNKI1 as a therapeutic agent to prevent cell loss in the central nervous system.

Key Words

JNK inhibitors excitotoxicity neurodegeneration ischemic damage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW, Wang YT, Salter MW, and Tymianski M. Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science 298: 846–850, 2002.PubMedCrossRefGoogle Scholar
  2. 2.
    Barr RK, Kendrick TS, and Bogoyevitch MA. Identification of the critical features of a small peptide inhibitor of JNK activity. JBiol Chem 277: 10987–10997, 2002.CrossRefGoogle Scholar
  3. 3.
    Behrens A, Sibilia M, and Wagner EF. Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 21: 326–329, 1999.PubMedCrossRefGoogle Scholar
  4. 4.
    Bennett BL, Sasaki DT, Murray BW, O’Leary EC, Sakata ST, Xu W, Leisten JC, Motiwala A, Pierce S, Satoh Y, Bhagwat SS, Manning AM, and Anderson DW. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci U S A 98: 13681–13686, 2001.PubMedCrossRefGoogle Scholar
  5. 5.
    Bogoyevitch MA, Boehm I, Oakley A, Ketterman AJ, and Barr RK. Targeting the JNK MAPK cascade for inhibition: basic science and therapeutic potential. Biochim Biophys Acta 1697: 89–101, 2004.PubMedGoogle Scholar
  6. 6.
    Bonny C, Oberson A, Negri S, Sauser C, and Schorderet DF. Cell-permeable peptide inhibitors of JNK: novel blockers of \-cell death. Diabetes 50: 77–82, 2001.PubMedCrossRefGoogle Scholar
  7. 7.
    Borsello T and Bonny C. Use of cell-permeable peptides to prevent neuronal degeneration. Trends Mol Med 10: 239–244, 2004.PubMedCrossRefGoogle Scholar
  8. 8.
    Borsello T, Clarke PG, Hirt L, Vercelli A, Repici M, Schorderet DF, Bogousslavsky J, and Bonny C. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 9: 1180–1186, 2003.PubMedCrossRefGoogle Scholar
  9. 9.
    Borsello T, Croquelois K, Hornung JP, and Clarke PG. N-methyl-d-aspartate-triggered neuronal death in organotypic hippocampal cultures is endocytic, autophagic and mediated by the c-Jun N-terminal kinase pathway. Eur J Neurosci 18: 473–485, 2003.PubMedCrossRefGoogle Scholar
  10. 10.
    Bozyczko-Coyne D, Saporito MS, and Hudkins RL. Targeting the JNK pathway for therapeutic benefit in CNS disease. Curr Drug Target CNS Neurol Disord 1: 31–49, 2002.CrossRefGoogle Scholar
  11. 11.
    Brecht S, Kirchhof R, Chromik A, Willesen M, Nicolaus T, Raivich G, Wessig J, Waetzig V, Goetz M, Claussen M, Pearse D, Kuan CY, Vaudano E, Behrens A, Wagner E, Flavell RA, Davis RJ, and Herdegen T. Specific pathophysiological functions of JNK isoforms in the brain. Eur J Neurosci 21: 363–377, 2005.PubMedCrossRefGoogle Scholar
  12. 12.
    Cavigelli M, Dolfi F, Claret FX, and Karin M. Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation. Embo J 14: 5957–5964, 1995.PubMedGoogle Scholar
  13. 13.
    Coffey ET, Hongisto V, Dickens M, Davis RJ, and Courtney MJ. Dual Roles for c-Jun N-Terminal Kinase in Developmental and Stress Responses in Cerebellar Granule Neurons. J Neurosci 20: 7602–7613, 2000.PubMedGoogle Scholar
  14. 14.
    Coffey ET, Smiciene G, Hongisto V, Cao J, Brecht S, Herdegen T, and Courtney MJ. c-Jun N-terminal protein kinase (JNK) 2/3 is specifically activated by stress, mediating c-Jun activation, in the presence of constitutive JNK1 activity in cerebellar neurons. J Neurosci 22: 4335–4345, 2002.PubMedGoogle Scholar
  15. 15.
    Del Villar K and Miller CA. Down-regulation of DENN/MADD, a TNF receptor binding protein, correlates with neuronal cell death in Alzheimer’s disease brain and hippocampal neurons. Proc Natl Acad Sci U S A 101:4210–4215, 2004.PubMedCrossRefGoogle Scholar
  16. 16.
    Eynott PR, Nath P, Leung SY, Adcock IM, Bennett BL, and Chung KF. Allergen-induced inflammation and airway epithelial and smooth muscle cell proliferation: role of Jun N-terminal kinase. Br J Pharmacol 140: 1373–1380, 2003.PubMedCrossRefGoogle Scholar
  17. 17.
    Glaser JR and Glaser EM. Neuron imaging with Neurolucida-a PC-based system for image combining microscopy. Comput Med Imaging Graph 14: 307–317, 1990.PubMedCrossRefGoogle Scholar
  18. 18.
    Han Z, Boyle DL, Chang L, Bennett B, Karin M, Yang L, Manning AM, and Firestein GS. c-Jun N-terminal kinase is required for metal loproteinase expression and joint destruction in inflammatory arthritis. J Clin Invest 108: 73–81, 2001.PubMedCrossRefGoogle Scholar
  19. 19.
    Herdegen T, Skene P, and Bahr M. The c-Jun transcription factor-bipotential mediator of neuronal death, survival and regeneration. Trends Neurosci 20: 227–231, 1997.PubMedCrossRefGoogle Scholar
  20. 20.
    Inomata H, Nakamura Y, Hayakawa A, Takata H, Suzuki T, Miyazawa K, and Kitamura N. A scaffold protein JIP-lb enhances amyloid precursor protein phosphorylation by JNK and its association with kinesin light chain 1. J Biol Chem 278: 22946–22955, 2003.PubMedCrossRefGoogle Scholar
  21. 21.
    Ip YT and Davis RJ. Signal transduction by the c-Jun N-terminal kinase (JNK)-from inflammation to development. Curr Opin Cell Biol 10: 205–219, 1998.PubMedCrossRefGoogle Scholar
  22. 22.
    Kim HS, Park CH, Cha SH, Lee JH, Lee S, Kim Y, Rah JC, Jeong SJ, and Suh YH. Carboxyl-terminal fragment of Alzheimer’s APP destabilizes calcium homeostasis and renders neuronal cells vulnerable to excitotoxicity. Faseb J 14: 1508–1517, 2000.PubMedCrossRefGoogle Scholar
  23. 23.
    Ko HW, Park KY, Kim H, Han PL, Kim YU, Gwag BJ, and Choi EJ. Ca2+-mediated activation of c-Jun N-terminal kinase and nuclear factor kappa B by NMDA in cortical cell cultures. J Neurochem 71: 1390–1395, 1998.PubMedCrossRefGoogle Scholar
  24. 24.
    Kuan CY, Whitmarsh AJ, Yang DD, Liao G, Schloemer AJ, Dong C, Bao J, Banasiak KJ, Haddad GG, Flavell RA, Davis RJ, and Rakic P. A critical role of neural-specific JNK3 for ischemic apoptosis. Proc Natl Acad Sci USA 100: 15184–15189, 2003.PubMedCrossRefGoogle Scholar
  25. 25.
    Marques CA, Keil U, Bonert A, Steiner B, Haass C, Muller WE, and Eckert A. Neurotoxic mechanisms caused by the Alzheimer’s disease-linked Swedish amyloid precursor protein mutation: oxidative stress, caspases, and the JNK pathway. J Biol Chem 278: 28294–28302, 2003.PubMedCrossRefGoogle Scholar
  26. 26.
    Murakata C, Kaneko M, Gessner G, Angeles TS, Ator MA, O’Kane TM, McKenna BA, Thomas BA, Mathiasen JR, Saporito MS, Bozyczko-Coyne D, and Hudkins RL. Mixed lineage kinase activity of indolocarbazole analogues. Bioorg Med Chem Lett 12: 147–150, 2002.PubMedCrossRefGoogle Scholar
  27. 27.
    Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, and Woodgett JR. Phosphorylation of c-jun mediated by MAP kinases. Nature 353: 670–674, 1991.PubMedCrossRefGoogle Scholar
  28. 28.
    Putcha GV, Le S, Frank S, Besirli CG, Clark K, Chu B, Alix S, Youle RJ, LaMarche A, Maroney AC, and Johnson EM, Jr. JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 38: 899–914, 2003.PubMedCrossRefGoogle Scholar
  29. 29.
    Savinainen A, Garcia EP, Dorow D, Marshall J, and Liu YF. Kainate receptor activation induces mixed lineage kinase-mediated cellular signaling cascades via post-synaptic density protein 95. J Biol Chem 276: 11382–11386, 2001.PubMedCrossRefGoogle Scholar
  30. 30.
    Schauwecker PE. Seizure-induced neuronal death is associated with induction of c-Jun N-terminal kinase and is dependent on genetic background. Brain Res 884: 116–128, 2000.PubMedCrossRefGoogle Scholar
  31. 31.
    Schroeter H, Boyd CS, Ahmed R, Spencer JP, Duncan RF, Rice-Evans C, and Cadenas E. c-Jun N-terminal kinase (JNK)-mediated modulation of brain mitochondria function: new target proteins for JNK signalling in mitochondrion-dependent apoptosis. Biochem J 372: 359–369, 2003.PubMedCrossRefGoogle Scholar
  32. 32.
    Schwarze SR, Ho A, Vocero-Akbani A, and Dowdy SF. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285: 1569–1572, 1999.PubMedCrossRefGoogle Scholar
  33. 33.
    Standen CL, Brownlees J, Grierson AJ, Kesavapany S, Lau KF, McLoughlin DM, and Miller CC. Phosphorylation of thr(668) in the cytoplasmic domain of the Alzheimer’s disease amyloid precursor protein by stress-activated protein kinase 1b (Jun N-terminal kinase-3). J Neurochem 76: 316–320, 2001.PubMedCrossRefGoogle Scholar
  34. 34.
    Tezel G, Chauhan BC, LeBlanc RP, and Wax MB. Immunohistochemical assessment of the glial mitogen-activated protein kinase activation in glaucoma. Invest Ophthalmol Vis Sci 44: 3025–3033, 2003.PubMedGoogle Scholar
  35. 35.
    Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, and Davis RJ. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288: 870–874, 2000.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang J, Van De Water TR, Bonny C, de Ribaupierre F, Puel JL, and Zine A. A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. J Neurosci 23: 8596–8607, 2003.PubMedGoogle Scholar
  37. 37.
    Wang LH, Besirli CG, and Johnson EM, Jr. Mixed-lineage kinases: a target for the prevention of neurodegeneration. Annu Rev Pharmacol Toxicol 44: 451–474, 2004.PubMedCrossRefGoogle Scholar
  38. 38.
    Wang W, Shi L, Xie Y, Ma C, Li W, Su X, Huang S, Chen R, Zhu Z, Mao Z, Han Y, and Li M. SP600125, a new JNK inhibitor, protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Neurosci Res 48: 195–202, 2004.PubMedCrossRefGoogle Scholar
  39. 39.
    Yang DD, Kuan CY, Whitmarsh AJ, Rincon M, Zheng TS, Davis RJ, Rakic P, and Flavell RA. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389: 865–870, 1997.PubMedCrossRefGoogle Scholar
  40. 40.
    Yoshida H, Hastie CJ, McLauchlan H, Cohen P, and Goedert M. Phosphorylation of microtubule-associated protein tau by isoforms of c-Jun N-terminal kinase (JNK). J Neurochem 90: 352–358, 2004.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang Y, Zhou L, and Miller CA. A splicing variant of a death domain protein that is regulated by a mitogen-activated kinase is a substrate for c-Jun N-terminal kinase in the human central nervous system. Proc Natl Acad Sci USA 95: 2586–2591, 1998.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhu X, Raina AK, Rottkamp CA, Aliev G, Perry G, Boux H, and Smith MA. Activation and redistribution of c-jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer’s disease. J Neurochem 76: 435–441, 2001.PubMedCrossRefGoogle Scholar
  43. 43.
    Zipfel GJ, Babcock DJ, Lee JM, and Choi DW. Neuronal apoptosis after CNS injury: the roles of glutamate and calcium. J Neurotrauma 17: 857–869, 2000.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Mariaelena Repici
    • 1
  • Tiziana Borsello
    • 1
    • 2
  1. 1.University of LausanneLausanneSwitzerland
  2. 2.Biol. Neurodeg. Disorders LabIstituto di ricerche Farmacologiche “Mario Negri”MilanoItaly

Personalised recommendations