Advertisement

Blocking Stress Signaling Pathways with Cell Permeable Peptides

  • Christophe Bonny
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 588)

Abstract

Cells are continuously adapting to changes in their environment by activating extracellular stimuli-dependent signal transduction cascades. These cascades, or signaling pathways, culminate both in changes in genes expression and in the functional regulation of pre-existing proteins. The Mitogen-Activated Protein Kinases (MAPKs) constitute a structurally related class of signaling proteins whose distinctive feature is their ability to directly phosphorylate, and thereby modulate, the activity of the transcription factors that are targets of the initial stimuli. The specificity of activation of MAPK signaling modules is determined, at least for an important part, by the specificity of the protein-protein contacts that are required for the propagation of the signal. We will discuss how we may interfere with MAPK signaling by using short cell-permeable peptides able to block, through a competitive mechanisms, relevant protein-protein contacts, and their effects on signaling and cell function.

Key Words

signaling apoptosis cell-permeable peptides MAPK 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REferences

  1. 1.
    Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW, Wang YT, Salter MW and Tymianski M. Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science 298: 846–850, 2002.PubMedCrossRefGoogle Scholar
  2. 2.
    Adler V, Unlap T and Kraft AS. A peptide encoding the c-Jun delta domain inhibits the activity of a c-jun amino-terminal protein kinase. J Biol Chem 269: 11186–11191, 1994.PubMedGoogle Scholar
  3. 3.
    Aguirre V, Uchida T, Yenush L, Davis R and White MF. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 275: 9047–9054, 2000.PubMedCrossRefGoogle Scholar
  4. 4.
    Bain J, McLauchlan H, Elliott M and Cohen P. The specificities of protein kinase inhibitors: an update. Biochem J 371: 199–204, 2003.PubMedCrossRefGoogle Scholar
  5. 5.
    Bardwell L and Thorner J. A conserved motif at the amino termini of MEKs might mediate high-affinity interaction with the cognate MAPKs. Trends Biochem Sci 21: 373–374, 1996.PubMedCrossRefGoogle Scholar
  6. 6.
    Barr RK, Kendrick TS and Bogoyevitch MA. Identification of the critical features of a small peptide inhibitor of c-Jun N-terminal kinase (JNK) activity. J Biol Chem 2002.Google Scholar
  7. 7.
    Bonny C, Nicod P and Waeber G. IB1, a JIP-1-related nuclear protein present in insulin-secreting cells. J Biol Chem 273: 1843–1846, 1998.PubMedCrossRefGoogle Scholar
  8. 8.
    Bonny C, Oberson A, Negri S, Sauser C and Schorderet DF. Cell-permeable peptide inhibitors of JNK: Novel blockers of «beta»-cell death. Diabetes 50: 77–82, 2001.PubMedCrossRefGoogle Scholar
  9. 9.
    Borsello T, Clarke PGH, Hirt L, Vercelli A, Repici M, Schorderet DF, Bogousslavsky J and Bonny C. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nature Medicine 9: 1180–1186, 2003.PubMedCrossRefGoogle Scholar
  10. 10.
    Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH and Yancopoulos GD. ERKs: a family of protein-serine/ threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65: 663–675, 1991.PubMedCrossRefGoogle Scholar
  11. 11.
    Brecht S, Kirchhof R, Chromik A, Willesen M, Nicolaus T, Raivich G, Wessig J, Waetzig V, Goetz M, Claussen M, Pearse D, Kuan CY, Vaudano E, Behrens A, Wagner E, Flavell RA, Davis RJ and Herdegen T. Specific pathophysiological functions of JNK isoforms in the brain. Eur J Neurosci 21: 363–377, 2005.PubMedCrossRefGoogle Scholar
  12. 12.
    Clerk A, Fuller SJ, Michael A and Sugden PH. Stimulation of «stress-regulated» mitogen-activated protein kinases (stress-activated protein kinases/c-Jun N-terminal kinases and p38-mitogen-activated protein kinases) in perfused rat hearts by oxidative and other stresses. J Biol Chem 273: 7228–7234, 1998.PubMedCrossRefGoogle Scholar
  13. 13.
    Davis RJ. Signal transduction by the c-Jun N-terminal kinase. Biochem Soc Symp 64: 1–12, 1999.PubMedGoogle Scholar
  14. 14.
    Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell 103: 239–252, 2000.PubMedCrossRefGoogle Scholar
  15. 15.
    Efimova T, Broome AM and Eckert RL. A regulatory role for p38 delta MAPK in keratinocyte differentiation. Evidence for p38 delta-ERK1/2 complex formation. J Biol Chem 278: 34277–34285, 2003.PubMedCrossRefGoogle Scholar
  16. 16.
    Efimova T, Broome AM and Eckert RL. Protein kinase Cdelta regulates keratinocyte death and survival by regulating activity and subcellular localization of a p38delta-extracellular signal-regulated kinase 1/2 complex. Mol Cell Biol 24: 8 67-8183, 2004.Google Scholar
  17. 17.
    Enslen H, Brancho DM and Davis RJ. Molecular determinants that mediate selective activation of p38 MAP kinase isoforms. EMBO J 19: 1301–1311, 2000.PubMedCrossRefGoogle Scholar
  18. 18.
    Enslen H and Davis RJ. Regulation of MAP kinases by docking domains. Biol Cell 93: 5–14, 2001.PubMedCrossRefGoogle Scholar
  19. 19.
    Franklin CC, Sanchez V, Wagner F, Woodgett JR and Kraft AS. Phorbol ester-induced amino-terminal phosphorylation of human JUN but not JUNB regulates transcriptional activation. Proc Natl Acad Sci U S A 89: 7247–7251, 1992.PubMedCrossRefGoogle Scholar
  20. 20.
    Gius DR, Ezhevsky SA, Becker-Hapak M, Nagahara H, Wei MC and Dowdy SF. Transduced p16INK4a peptides inhibit hypophosphorylation of the retinoblastoma protein and cell cycle progression prior to activation of Cdk2 complexes in late G1. Cancer Res 59: 2577–2580, 1999.PubMedGoogle Scholar
  21. 21.
    Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Derijard B and Davis RJ. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15:2760–2770, 1996.PubMedGoogle Scholar
  22. 22.
    Hess P, Pihan G, Sawyers CL, Flavell RA and Davis RJ. Survival signaling mediated by c-Jun NH(2)-terminal kinase in transformed B lymphoblasts. Nat Genet 32: 201–205, 2002.PubMedCrossRefGoogle Scholar
  23. 23.
    Hirt L, Badaut J, Thevenet J, Granziera C, Regli L, Maurer F, Bonny C and Bogousslavsky J. D-JNKI1, a Cell-Penetrating c-Jun-N-Terminal Kinase Inhibitor, Protects Against Cell Death in Severe Cerebral Ischemia. Stroke 2004.Google Scholar
  24. 24.
    Ito M, Yoshioka K, Akechi M, Yamashita S, Takamatsu N, Sugiyama K, Hibi M, Nakabeppu Y, Shiba T and Yamamoto KI. JSAP1, a novel jun N-terminal protein kinase (JNK)-binding protein that functions as a Scaffold factor in the JNK signaling pathway. Mol Cell Biol 19: 7539–7548, 1999.PubMedGoogle Scholar
  25. 25.
    Kallunki T, Deng T, Hibi M and Karin M. c-Jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions. Cell 87: 929–939, 1996.PubMedCrossRefGoogle Scholar
  26. 26.
    Kaneto H, Nakatani Y, Miyatsuka T, Kawamori D, Matsuoka TA, Matsuhisa M, Kajimoto Y, Ichijo H, Yamasaki Y and Hori M. Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide. Nat Med 2004.Google Scholar
  27. 27.
    Keesler GA, Bray J, Hunt J, Johnson DA, Gleason T, Yao Z, Wang SW, Parker C, Yamane H, Cole C and Lichenstein HS. Purification and activation of recombinant p38 isoforms alpha, beta, gamma, and delta. Protein Expr Purif 14: 221–228, 1998.PubMedCrossRefGoogle Scholar
  28. 28.
    Kelemen BR, Hsiao K and Goueli SA. Selective in Vivo Inhibition of Mitogen-activated Protein Kinase Activation Using Cell-permeable Peptides. J Biol Chem 277: 8741–8748, 2002.PubMedCrossRefGoogle Scholar
  29. 29.
    Kelkar N, Gupta S, Dickens M and Davis RJ. Interaction of a mitogen-activated protein kinase signaling module with the neuronal protein JIP3. Mol Cell Biol 20: 1030–1043, 2000.PubMedCrossRefGoogle Scholar
  30. 30.
    Kuan CY, Whitmarsh AJ, Yang DD, Liao G, Schloemer AJ, Dong C, Bao J, Banasiak KJ, Haddad GG, Flavell RA, Davis RJ and Rakic P. A critical role of neural-specific JNK3 for ischemic apoptosis. Proc Natl Acad Sci U S A 100: 15184–15189, 2003.PubMedCrossRefGoogle Scholar
  31. 31.
    Lee YH, Giraud J, Davis RJ and White MF. c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem 278: 2896–2902, 2003.PubMedCrossRefGoogle Scholar
  32. 32.
    May GH, Funk M, Black EJ, Clark W, Hussain S, Woodgett JR and Gillespie DA. An oncogenic mutation uncouples the v-Jun oncoprotein from positive regulation by the SAPK/JNK pathway in vivo. Curr Biol 8: 117–120, 1998.PubMedCrossRefGoogle Scholar
  33. 33.
    May MJ, D’Acquisto F, Madge LA, Glockner J, Pober JS and Ghosh S. Selective Inhibition of NF-kappaB Activation by a Peptide That Blocks the Interaction of NEMO with the IkappaB Kinase Complex. Science 289: 1550–1554, 2000.PubMedCrossRefGoogle Scholar
  34. 34.
    Mooser V, Maillard A, Bonny C, Steinmann M, Shaw P, Yarnall DP, Burns DK, Schorderet DF, Nicod P and Waeber G. Genomic organization, fine-mapping, and expression of the human islet-brain 1 (IB1)/c-Jun-amino-terminal kinase interacting protein-1 (JIP-1) gene. Genomics 55: 202–208, 1999.PubMedCrossRefGoogle Scholar
  35. 35.
    Negri S, Oberson A, Steinmann M, Nicod P, Waeber G, Schorderet DF and Bonny C. cDNA Cloning and Mapping of a Novel Islet-Brain/JNK Interacting Protein. Genomics 64: 324–330, 2000.PubMedCrossRefGoogle Scholar
  36. 36.
    Ono K and Han J. The p38 signal transduction pathway: activation and function. Cell Signal 12: 1–13, 2000.PubMedCrossRefGoogle Scholar
  37. 37.
    Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ and Davis RJ. Proinflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 270: 7420–7426, 1995.PubMedCrossRefGoogle Scholar
  38. 38.
    Saklatvala J. The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr Opin Pharmacol 4: 372–377, 2004.PubMedCrossRefGoogle Scholar
  39. 39.
    Schaeffer HJ, Catling AD, Eblen ST, Collier LS, Krauss A and Weber MJ. MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science 281: 1668–1671, 1998.PubMedCrossRefGoogle Scholar
  40. 40.
    Schoorlemmer J and Goldfarb M. FGF homologous factors and the islet brain-2 scaffold protein regulate activation of a stress-activated protein kinase. J Biol Chem 277: 49111–49119, 2002.PubMedCrossRefGoogle Scholar
  41. 41.
    Schwarze SR, Ho A, Vocero-Akbani A and Dowdy SF. In Vivo Protein Transduction: Delivery of a Biologically Active Protein into the Mouse. Science 285: 1573–1576, 1999.CrossRefGoogle Scholar
  42. 42.
    Sharrocks AD, Yang SH and Galanis A. Docking domains and substrate-specificity determination for MAP kinases. Trends Biochem Sci 25: 448–453, 2000.PubMedCrossRefGoogle Scholar
  43. 43.
    Sharrocks AD, Yang SH and Galanis A. Docking domains and substrate-specificity determination for MAP kinases. Trends Biochem Sci 25: 448–453, 2000.PubMedCrossRefGoogle Scholar
  44. 44.
    Sugioka R, Shimizu S, Funatsu T, Tamagawa H, Sawa Y, Kawakami T and Tsujimoto Y. BH4-domain peptide from Bcl-xL exerts anti-apoptotic activity in vivo. Oncogene 22: 8432–8440, 2003.PubMedCrossRefGoogle Scholar
  45. 45.
    Tanoue T, Adachi M, Moriguchi T and Nishida E. A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol 2: 110–116, 2000.PubMedCrossRefGoogle Scholar
  46. 46.
    Vachon PH, Harnois C, Grenier A, Dufour G, Bouchard V, Han J, Landry J, Beaulieu JF, Vezina A, Dydensborg AB, Gauthier R, Cote A, Drolet JF and Lareau F. Differentiation state-selective roles of p38 isoforms in human intestinal epithelial cell anoikis. Castroenterology 123: 1980–1991, 2002.CrossRefGoogle Scholar
  47. 47.
    Waeber G, Delplanque J, Bonny C, Mooser V, Steinmann M, Widmann C, Maillard A, Miklossy J, Dina C, Hani EH, Vionnet N, Nicod P, Boutin P and Froguel P. The gene MAPK8IP1, encoding islet-brain-1, is a candidate for type 2 diabetes. Nat Genet 24: 291–295, 2000.PubMedCrossRefGoogle Scholar
  48. 48.
    Waetzig V and Herdegen T. A single c-Jun N-terminal kinase isoform (JNK3-p54) is an effector in both neuronal differentiation and cell death. J Biol Chem 278: 567–572, 2003.PubMedCrossRefGoogle Scholar
  49. 49.
    Wang J, Van de Water TR, Bonny C, de Ribaupierre F, Puel JL and Zine A. A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. Journal of Neuroscience 23: 8596–8607, 2003.PubMedGoogle Scholar
  50. 50.
    Weston CR and Davis RJ. The JNK signal transduction pathway. Curr Opin Genet Dev 12: 14–21, 2002.PubMedCrossRefGoogle Scholar
  51. 51.
    Whitmarsh AJ, Cavanagh J, Tournier C, Yasuda J and Davis RJ. A mammalian scaffold complex that selectively mediates MAP kinase activation. Science 281: 1671–1674, 1998.PubMedCrossRefGoogle Scholar
  52. 52.
    Whitmarsh AJ and Davis RJ. Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem Sci 23: 481–485, 1998.PubMedCrossRefGoogle Scholar
  53. 53.
    Widmann C, Gibson S, Jarpe MB and Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79: 143–180, 1999.PubMedGoogle Scholar
  54. 54.
    Wijayanti N, Huber S, Samoylenko A, Kietzmann T and Immenschuh S. Role of NF-kappaB and p38 MAP kinase signaling pathways in the lipopolysaccharide-dependent activation of heme oxygenase-1 gene expression. Antioxid Redox Signal 6: 802–810, 2004.PubMedGoogle Scholar
  55. 55.
    Willam C, Masson N, Tian YM, Mahmood SA, Wilson MI, Bicknell R, Eckardt KU, Maxwell PH, Ratcliffe PJ and Pugh CW Peptide blockade of HIFalpha degradation modulates cellular metabolism and angiogenesis. Proc Natl Acad Sci U S A 99: 10423–10428, 2002.PubMedCrossRefGoogle Scholar
  56. 56.
    Xia Y, Wu Z, Su B, Murray B and Karin M. JNKK1 organizes a MAP kinase module through specific and sequential interactions with upstream and downstream components mediated by its amino-terminal extension. Genes Dev 12: 3369–3381, 1998.PubMedGoogle Scholar
  57. 57.
    Xu B, Stippec S, Robinson FL and Cobb MH. Hydrophobic as well as charged residues in both MEK1 and ERK2 are important for their proper docking. J Biol Chem 276: 26509–26515, 2001.CrossRefGoogle Scholar
  58. 58.
    Yang SH, Whitmarsh AJ, Davis RJ and Sharrocks AD. Differential targeting of MAP kinases to the ETS-domain transcription factor Elk-1. EMBO J 17: 1740–1749, 1998.PubMedCrossRefGoogle Scholar
  59. 59.
    Yang SH, Yates PR, Whitmarsh AJ, Davis RJ and Sharrocks AD. The Elk-1 ETS-domain transcription factor contains a mitogen-activated protein kinase targeting motif. Mol Cell Biol 18: 710–720, 1998.PubMedGoogle Scholar
  60. 60.
    Yasuda J, Whitmarsh AJ, Cavanagh J, Sharma M and Davis RJ. The JIP group of mitogen-activated protein kinase scaffold proteins. Mol Cell Biol 19: 7245–7254, 1999.PubMedGoogle Scholar
  61. 61.
    Ye H, Arron JR, Lamothe B, Cirilli M, Kobayashi T, Shevde NK, Segal D, Dzivenu OK, Vologodskaia M, Yim M, Du K, Singh S, Pike JW, Darnay BG, Choi Y and Wu H. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418: 443–447, 2002PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Christophe Bonny
    • 1
  1. 1.CHUVUnit of Molecular GeneticsLausanneSwitzerland

Personalised recommendations