Induction and Maintenance of Cd8+ T Cells Specific for Persistent Viruses

  • Ester M. M. van Leeuwen
  • Ineke J. M. ten Berge
  • René A. W. van Lier
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 590)


The development of immunological memory is a unique property of the adaptive immune system. Until recently most studies on the induction of virus-specific memory CD8+ T cells have been performed in mice models of acute infection. Based on these studies, certain properties have been attributed to memory CD8+ T cells concerning their responsiveness to antigenic stimulation and their ability to survive. However, many relevant human viruses are persistent and reach a latency stage in which there is equilibrium between the virus and the host immune system.


Human Immunodeficiency Virus Human Immunodeficiency Virus Type Human Immunodeficiency Virus Infection Memory Phase Persistent Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  1. 1.
    N. Khan, N. Shariff, M. Cobbold, R. Bruton, J.A. Ainsworth, A.J. Sinclair, L. Nayak and P.A. Moss. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol 169:1984–1992 (2002.PubMedGoogle Scholar
  2. 2.
    J.W. Gratama, A.M. Naipal, M.A. Oosterveer, T. Stijnen, H.C. Kluin-Nelemans, L.A. Ginsel, G.J. Ottolander, A.C. Hekker, J. D’Amaro and M van der Giessen. Effects of herpes virus carrier status on peripheral T lymphocyte subsets. Blood 70:516–523 (1987).PubMedGoogle Scholar
  3. 3.
    E.C. Wang, P.A. Moss, P. Frodsham, P.J. Lehner, J.I. Bell and L.K. Borysiewicz. CD8highCD57+ T lymphocytes in normal, healthy individuals are oligoclonal and respond to human cytomegalovirus. J Immunol 155:5046–5056 (1995).PubMedGoogle Scholar
  4. 4.
    T.G. Evans, E.G. Kallas, A.E. Luque, M. Menegus, C. McNair and R.J. Looney. Expansion of the CD57 subset of CD8 T cells in HIV-1 infection is related to CMV serostatus. AIDS 13:1139–1141 (1999).PubMedCrossRefGoogle Scholar
  5. 5.
    T.W. Kuijpers, M.T. Vossen, M.R. Gent, J.C. Davin, M.T. Roos, P.M. Wertheimvan Dillen, J.F. Weel, P.A. Baars and RA van Lier. Frequencies of circulating cyto lytic, CD45RA+CD27−, CD8+ T lymphocytes depend on infection with CMV. J Immunol 170:4342–4348 (2003).PubMedGoogle Scholar
  6. 6.
    V. Bekker, C. Bronke, H.J. Scherpbier, J.F. Weel, S. Jurriaans, P.M. Wertheim-van Dillen, V. van Leth, J.M. Lange, K. Tesselaar, D. van Baarle and T.W. Kuijpers. Cytomegalovirus rather than HIV triggers the outgrowth of effector CD8+CD45RA+. AIDS 19:1025–1034 (2005).PubMedCrossRefGoogle Scholar
  7. 7.
    E.M. van Leeuwen, E.B. Remmerswaal, M.T. Vossen, A.T. Rowshani, P.M. Wertheim-van Dillen, R.A. van Lier and I.J. ten Berge. Emergence of a CD4+CD28− granzyme B+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus infection. J Immunol 173:1834–1841 (2004).PubMedGoogle Scholar
  8. 8.
    M. Lucas, A.L. Vargas-Cuero, G.M. Lauer, E. Barnes, C.B. Willberg, N. Semmo, B.D. Walker, R. Phillips and P. Klenerman. Pervasive influence of hepatitis C virus on the phenotype of antiviral CD8+ T cells. J Immunol 172:1744–1753 (2004).PubMedGoogle Scholar
  9. 9.
    M.J. Reddehase. Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2:831–844 (2002).PubMedCrossRefGoogle Scholar
  10. 10.
    E.S. Mocarski Jr. Immunomodulation by cytomegaloviruses: manipulative strategies beyond evasion. Trends Microbiol 10:332–339 (2002).PubMedCrossRefGoogle Scholar
  11. 11.
    N. Khan, A. Hislop, N. Gudgeon, M. Cobbold, R. Khanna, L. Nayak, A.B. Rickinson and P.A. Moss. Herpesvirus-specific CD8 T cell immunity in old age: cytomegalovirus impairs the response to a coresident EBV infection. J Immunol 173:7481–7489 (2004).PubMedGoogle Scholar
  12. 12.
    U. Karrer, S. Sierro, M. Wagner, A. Oxenius, H. Hengel, U.H. Koszinowski, R.E. Phillips and P. Klenerman. Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J Immunol 170:2022–2029 (2003).PubMedGoogle Scholar
  13. 13.
    R.M. Welsh, K. Bahl and X.Z. Wang. Apoptosis and loss of virus-specific CD8+ Tcell memory. Curr Opin Immunol 16:271–276 (2004).PubMedCrossRefGoogle Scholar
  14. 14.
    S.K. Kim and R.M. Welsh. Comprehensive early and lasting loss of memory CD8 T cells and functional memory during acute and persistent viral infections. J Immunol 172:3139–3150 (2004).PubMedGoogle Scholar
  15. 15.
    R.C. Walker, W.F. Marshall, J.G. Strickler, R.H. Wiesner, J.A. Velosa, T.M. Habermann, C.G. McGregor and C.V. Paya. Pretransplantation assessment of the risk of lymphoproliferative disorder. Clin Infect Dis 20:1346–1353 (1995).PubMedGoogle Scholar
  16. 16.
    S.M. Kaech, E.J. Wherry and R. Ahmed. Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2:251–262 (2002).PubMedCrossRefGoogle Scholar
  17. 17.
    S.M. Kaech, J.T. Tan, E.J. Wherry, B.T. Konieczny, C.D. Surh and R. Ahmed. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4:1191–1198 (2003).PubMedCrossRefGoogle Scholar
  18. 18.
    K.M. Huster, V. Busch, M. Schiemann, K. Linkemann, K.M. Kerksiek, H. Wagner and D.H. Busch. Selective expression of IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8+ memory T cell subsets. Proc Natl Acad Sci USA 101:5610–5615 (2004).PubMedCrossRefGoogle Scholar
  19. 19.
    S.M. Kaech and R. Ahmed. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat Immunol 2:415–422 (2001).PubMedGoogle Scholar
  20. 20.
    M.J. van Stipdonk, E.E. Lemmens and S.P. Schoenberger. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat Immunol 2:423–429 (2001).PubMedGoogle Scholar
  21. 21.
    V.P. Badovinac, B.B. Porter and J.T. Harty. Programmed contraction of CD8(+) T cells after infection. Nat Immunol 3:619–626 (2002).PubMedCrossRefGoogle Scholar
  22. 22.
    E.M. Janssen, E.E. Lemmens, T. Wolfe, U. Christen, M.G. von Herrath and S.P. Schoenberger. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421:852–856 (2003).PubMedCrossRefGoogle Scholar
  23. 23.
    D.J, Shedlock and H. Shen. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300:337–339 (2003).PubMedCrossRefGoogle Scholar
  24. 24.
    J.C. Sun and M.J. Bevan. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300:339–342 (2003).PubMedCrossRefGoogle Scholar
  25. 25.
    J.C. Sun, M.A. Williams and M.J. Bevan. CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 5:927–933 (2004).PubMedCrossRefGoogle Scholar
  26. 26.
    K. Murali-Krishna, J.D. Altman, M. Suresh, D.J. Sourdive, A.J. Zajac, J.D. Miller, J. Slansky and R. Ahmed. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8:177–187 (1998).PubMedCrossRefGoogle Scholar
  27. 27.
    R.G. van der Most, K. Murali-Krishna, J.G. Lanier, E.J. Wherry, M.T. Puglielli, J.N. Blattman, A. Sette and R. Ahmed. Changing immunodominance patterns in antiviral CD8 T-cell responses after loss of epitope presentation or chronic antigenic stimulation. Virology 315:93–102 (2003).PubMedCrossRefGoogle Scholar
  28. 28.
    E.J. Wherry, J.N. Blattman, K. Murali-Krishna, R. van der Most and R. Ahmed. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J Virol 77:4911–4927 (2003).PubMedCrossRefGoogle Scholar
  29. 29.
    K. Tewari, J. Sacha, X. Gao and M. Suresh. Effect of chronic viral infection on epitope selection, cytokine production, and surface phenotype of CD8 T cells and the role of IFN-gamma receptor in immune regulation. J Immunol 172:1491–1500 (2004).PubMedGoogle Scholar
  30. 30.
    W. Chen, L.C. Anton, J.R. Bennink and J.W. Yewdell. Dissecting the multifactorial causes of immunodominance in class I-restricted T cell responses to viruses. Immunity 12:83–93 (2000).PubMedCrossRefGoogle Scholar
  31. 31.
    P.G. Stevenson, G.T. Belz, J.D. Altman and P.C. Doherty. Changing patterns of dominance in the CD8+ T cell response during acute and persistent murine gammaherpesvirus infection. Eur J Immunol 29:1059–1067 (1999).PubMedCrossRefGoogle Scholar
  32. 32.
    C.C. Bergmann, J.D. Altman, D. Hinton and S.A. Stohlman. Inverted immunodominance and impaired cytolytic function of CD8+ T cells during viral persistence in the central nervous system. J Immunol 163:3379–3387 (1999).PubMedGoogle Scholar
  33. 33.
    C.C. Kemball, E.D. Lee, V. Vezys, T.C. Pearson, C.P. Larsen and A.E. Lukacher. Late priming and variability of epitope-specific CD8+ T cell responses during a persistent virus infection. J Immunol 174:7950–7960 (2005).PubMedGoogle Scholar
  34. 34.
    N.M. Steven, A.M. Leese, N.E. Annels, S.P. Lee and A.B. Rickinson. Epitope focusing in the primary cytotoxic T cell response to Epstein-Barr virus and its relationship to T cell memory. J Exp Med 184:1801–1813 (1996).PubMedCrossRefGoogle Scholar
  35. 35.
    P.J. Goulder, A.K. Sewell, D.G. Lalloo, D.A. Price, J.A. Whelan, J. Evans, G.P. Taylor, G. Luzzi, P. Giangrande, R.E. Phillips and A.J. McMichael. Patterns of immunodominance in HIV-1-specific cytotoxic T lymphocyte responses in two human histocompatibility leukocyte antigens (HLA)-identical siblings with HLA-A*0201 are influenced by epitope mutation. J Exp Med 185:1423–1433 (1997).PubMedCrossRefGoogle Scholar
  36. 36.
    M.F. Bachmann, M. Barner, A. Viola and M. Kopf. Distinct kinetics of cytokine production and cytolysis in effector and memory T cells after viral infection. Eur J Immunol 29:291–299 (1999).PubMedCrossRefGoogle Scholar
  37. 37.
    B.J. Swanson, M. Murakami, T.C. Mitchell, J. Kappler and P. Marrack. RANTES production by memory phenotype T cells is controlled by a posttranscriptional, TCR-dependent process. Immunity 17:605–615 (2002).PubMedCrossRefGoogle Scholar
  38. 38.
    H. Veiga-Fernandes, U. Walter, C. Bourgeois, A. McLean and B. Rocha. Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nat Immunol 1:47–53 (2000).PubMedCrossRefGoogle Scholar
  39. 39.
    D.L. Barber, E.J. Wherry and R. Ahmed. Cutting edge: rapid in vivo killing by memory CD8 T cells. J Immunol 171:27–31 (2003).PubMedGoogle Scholar
  40. 40.
    R.M. Welsh. Assessing CD8 T cell number and dysfunction in the presence of antigen. J Exp Med 193:F19–F22 (2001).PubMedCrossRefGoogle Scholar
  41. 41.
    E.J. Wherry, D.L. Barber, S.M. Kaech, J.N. Blattman and R. Ahmed. Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proc Natl Acad Sci USA 101:16004–16009 (2004).PubMedCrossRefGoogle Scholar
  42. 42.
    M.J. Fuller, A. Khanolkar, A.E. Tebo and A.J. Zajac. Maintenance, loss, and resurgence of T cell responses during acute, protracted, and chronic viral infections. J Immunol 172:4204–4214 (2004).PubMedGoogle Scholar
  43. 43.
    A.M. Byers, C.C. Kemball, J.M. Moser and A.E. Lukacher. Cutting edge: rapid in vivo CTL activity by polyoma virus-specific effector and memory CD8+ T cells. J Immunol 171:17–21 (2003).PubMedGoogle Scholar
  44. 44.
    E.J. Wherry, M.J. McElhaugh and L.C. Eisenlohr. Generation of CD8(+) T cell memory in response to low, high, and excessive levels of epitope. J Immunol 168:4455–4461 (2002).PubMedGoogle Scholar
  45. 45.
    P.A. Goepfert, A. Bansal, B.H. Edwards, G.D. Ritter Jr., I. Tellez, S.A. McPherson, S. Sabbaj and M.J. Mulligan. A significant number of human immunodeficiency virus epitope-specific cytotoxic T lymphocytes detected by tetramer binding do not produce gamma interferon. J Virol 74:10249–10255 (2000).PubMedCrossRefGoogle Scholar
  46. 46.
    P. Shankar, M. Russo, B. Harnisch, M. Patterson, P. Skolnik and J. Lieberman. Impaired function of circulating HIV-specific CD8(+) T cells in chronic human immunodeficiency virus infection. Blood 96:3094–3101 (2000).PubMedGoogle Scholar
  47. 47.
    S. Kostense, G.S. Ogg, E.H. Manting, G. Gillespie, J. Joling, K. Vandenberghe, E.Z. Veenhof, D. van Baarle, S. Jurriaans, M.R. Klein and F. Miedema. High viral burden in the presence of major HIV-specific CD8(+) T cell expansions: evidence for impaired CTL effector function. Eur J Immunol 31:677–686 (2001).PubMedCrossRefGoogle Scholar
  48. 48.
    N.H. Gruener, F. Lechner, M.C. Jung, H. Diepolder, T. Gerlach, G. Lauer, B. Walker, J. Sullivan, R. Phillips, G.R. Pape and P. Klenerman. Sustained dysfunction of antiviral CD8+ T lymphocytes after infection with hepatitis C virus. J Virol 75:5550–5558 (2001).PubMedCrossRefGoogle Scholar
  49. 49.
    H. Wedemeyer, X.S. He, M. Nascimbeni, A.R. Davis, H.B. Greenberg, J.H. Hoofnagle, T.J. Liang, H. Alter and B. Rehermann. Impaired effector function of hepatitis C virus-specific CD8+ T cells in chronic hepatitis C virus infection. J Immunol 169:3447–3458 (2002).PubMedGoogle Scholar
  50. 50.
    V. Appay, D.F. Nixon, S.M. Donahoe, G.M. Gillespie, T. Dong, A. King, G.S. Ogg, H.M. Spiegel, C. Conlon, C.A. Spina, D.V. Havlir, D.D. Richman, A. Waters, P. Easterbrook, A.J. McMichael and S.L. Rowland-Jones. HIV-specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic function. J Exp Med 192:63–75 (2000).PubMedCrossRefGoogle Scholar
  51. 51.
    L.E. Gamadia, I.J. ten Berge, L.J. Picker and R.A. van Lier. Skewed maturation of virus-specific CTLs? Nat Immunol 3:203 (2002).PubMedCrossRefGoogle Scholar
  52. 52.
    L.E. Gamadia, E.B. Remmerswaal, J.F. Weel, F. Bemelman, R.A. van Lier and I.J. ten Berge. Primary immune responses to human CMV: a critical role for IFN-gamma-producing CD4+ T cells in protection against CMV disease. Blood 101:2686–2692 (2003).PubMedCrossRefGoogle Scholar
  53. 53.
    E.M. van Leeuwen, L.E. Gamadia, P.A. Baars, E.B. Remmerswaal, I.J. ten Berge and R.A. van Lier. Proliferation requirements of cytomegalovirus-specific, effector-type human CD8+ T cells. J Immunol 169:5838–5843 (2002).PubMedGoogle Scholar
  54. 54.
    E.M. van Leeuwen, G.J. de Bree, E.B. Remmerswaal, S.L. Yong, K. Tesselaar, I.J. ten Berge and R.A. van Lier. IL-7 receptor alpha chain expression distinguishes functional subsets of virus-specific human CD8+ T cells. Blood 106:2091–2098 (2005).PubMedCrossRefGoogle Scholar
  55. 55.
    R.M. Welsh, L.K. Selin and E. Szomolanyi-Tsuda. Immunological memory to viral infections. Annu Rev Immunol 22:711–743 (2004).PubMedCrossRefGoogle Scholar
  56. 56.
    E.J. Wherry, V. Teichgraber, T.C. Becker, D. Masopust, S.M. Kaech, R. Antia, U.H. von Andrian and R. Ahmed. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 4:225–234 (2003).PubMedCrossRefGoogle Scholar
  57. 57.
    A.L. Marzo, K.D. Klonowski, B.A. Le, P, Borrow, D.F. Tough and L. Lefrancois. Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nat Immunol 6:793–799 (2005).PubMedCrossRefGoogle Scholar
  58. 58.
    M.J. Fuller, D.A. Hildeman, S. Sabbaj, D.E. Gaddis, A.E. Tebo, L. Shang, P.A. Goepfert and A.J. Zajac. Cutting edge: emergence of CD127high functionally competent memory T cells is compromised by high viral loads and inadequate T cell help. J Immunol 174:5926–5930 (2005).PubMedGoogle Scholar
  59. 59.
    K.S. Lang, M. Recher, A.A. Navarini, N.L. Harris, M. Lohning, T. Junt, H.C. Probst, H. Hengartner and R.M. Zinkernagel. Inverse correlation between IL-7 receptor expression and CD8 T cell exhaustion during persistent antigen stimulation. Eur J Immunol 35:738–745 (2005).PubMedCrossRefGoogle Scholar
  60. 60.
    R.A. van Lier, I.J. ten Berge and L.E. Gamadia. Human CD8(+) T-cell differentiation in response to viruses. Nat Rev Immunol 3:931–939 (2003).PubMedCrossRefGoogle Scholar
  61. 61.
    X.S. He, K. Mahmood, H.T. Maecker, T.H. Holmes, G.W. Kemble, A.M. Arvin and H.B. Greenberg. Analysis of the frequencies and of the memory T cell phenotypes of human CD8+ T cells specific for influenza A viruses. J Infect Dis 187:1075–1084 (2003).PubMedCrossRefGoogle Scholar
  62. 62.
    G.J. de Bree, J. Heidema, E.M. van Leeuwen, G.M. van Bleek, R.E. Jonkers, H.M. Jansen, R.A. van Lier and T.A. Out. Respiratory syncytial virus-specific CD8+ memory T cell responses in elderly persons. J Infect Dis 191:1710–1718 (2005).PubMedCrossRefGoogle Scholar
  63. 63.
    V. Appay and S.L. Rowland-Jones. Lessons from the study of T-cell differentiation in persistent human virus infection. Semin Immunol 16:205–212 (2004).PubMedCrossRefGoogle Scholar
  64. 64.
    X.S. He, B. Rehermann, F.X. Lopez-Labrador, J. Boisvert, R. Cheung, J. Mumm, H. Wedemeyer, M. Berenguer, T.L. Wright, M.M. Davis and H.B. Greenberg. Quantitative analysis of hepatitis C virus-specific CD8(+) T cells in peripheral blood and liver using peptide-MHC tetramers. Proc Natl Acad Sci USA 96:5692–5697 (1999).PubMedCrossRefGoogle Scholar
  65. 65.
    G.S. Ogg, S. Kostense, M.R. Klein, S. Jurriaans, D. Hamann, A.J. McMichael and F. Miedema. Longitudinal phenotypic analysis of human immunodeficiency virus type 1-specific cytotoxic T lymphocytes: correlation with disease progression. J Virol 73:9153–9160 (1999).PubMedGoogle Scholar
  66. 66.
    M.D. Catalina, J.L. Sullivan, R.M. Brody and K. Luzuriaga. Phenotypic and functional heterogeneity of EBV epitope-specific CD8+ T cells. J Immunol 168:4184–4191 (2002).PubMedGoogle Scholar
  67. 67.
    V. Appay, P.R. Dunbar, M. Callan, P. Klenerman, G.M. Gillespie, L. Papagno, G.S. Ogg, A. King, F. Lechner, C.A. Spina, S. Little, D.V. Havlir, D.D. Richman, N. Gruener, G. Pape, A. Waters, P. Easterbrook, M. Salio, V. Cerundolo, A.J. McMichael and S.L. Rowland-Jones. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 8:379–385 (2002).PubMedCrossRefGoogle Scholar
  68. 68.
    G. Chen, P. Shankar, C. Lange, H. Valdez, P.R. Skolnik, L. Wu, N. Manjunath and J. Lieberman. CD8 T cells specific for human immunodeficiency virus, Epstein-Barr virus, and cytomegalovirus lack molecules for homing to lymphoid sites of infection. Blood 98:156–164 (2001).PubMedCrossRefGoogle Scholar
  69. 69.
    F. Kern, E. Khatamzas, I. Surel, C. Frommel, P. Reinke, S.L. Waldrop, L.J. Picker and H.D. Volk. Distribution of human CMV-specific memory T cells among the CD8pos subsets defined by CD57, CD27, and CD45 isoforms. Eur J Immunol 29:2908–2915 (1999).PubMedCrossRefGoogle Scholar
  70. 70.
    L.E. Gamadia, R.J. Rentenaar, P.A. Baars, E.B. Remmerswaal, S. Surachno, J.F. Weel, M. Toebes, T.N. Schumacher, I.J. ten Berge and R.A. van Lier. Differentiation of cytomegalovirus-specific CD8(+) T cells in healthy and immunosuppressed virus carriers. Blood 98:754–761 (2001).PubMedCrossRefGoogle Scholar
  71. 71.
    M.R. Wills, G. Okecha, M.P. Weekes, M.K. Gandhi, P.J. Sissons and A.J. Carmichael. Identification of naive or antigen-experienced human CD8(+) T cells by expression of costimulation and chemokine receptors: analysis of the human cytomegalovirus-specific CD8(+) T cell response. J Immunol 168:5455–5464 (2002).PubMedGoogle Scholar
  72. 72.
    J.K. Sandberg, N.M. Fast and D.F. Nixon. Functional heterogeneity of cytokines and cytolytic effector molecules in human CD8+ T lymphocytes. J Immunol 167:181–187 (2001).PubMedGoogle Scholar
  73. 73.
    G.J. de Bree, E.M. van Leeuwen, T.A. Out, H.M. Jansen, R.E. Jonkers and R.A. van Lier. Selective accumulation of differentiated CD8+ T cells specific for respiratory viruses in the human lung. J Exp Med 202:1433–1442 (2005).PubMedCrossRefGoogle Scholar
  74. 74.
    L.E. Gamadia, E.M. van Leeuwen, E.B. Remmerswaal, S.L. Yong, S. Surachno, P.M. Wertheim-van Dillen, I.J. ten Berge and R.A. van Lier. The size and phenotype of virus-specific T cell populations is determined by repetitive antigenic stimulation and environmental cytokines. J Immunol 172:6107–6114 (2004).PubMedGoogle Scholar
  75. 75.
    M. Paiardini, B. Cervasi, H. Albrecht, A. Muthukumar, R. Dunham, S. Gordon, H. Radziewicz, G. Piedimonte, M. Magnani, M. Montroni, S.M. Kaech, A. Weintrob, J.D. Altman, D.L. Sodora, M.B. Feinberg and G. Silvestri. Loss of CD127 expression defines an expansion of effector CD8+ T cells in HIV-infected individuals. J Immunol 174:2900–2909 (2005).PubMedGoogle Scholar
  76. 76.
    L.L. Lau, B.D. Jamieson, T. Somasundaram and R. Ahmed. Cytotoxic T-cell memory without antigen. Nature 369:648–652 (1994).PubMedCrossRefGoogle Scholar
  77. 77.
    S. Hou, L. Hyland, K.W. Ryan, A. Portner and P.C. Doherty. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature 369:652–654 (1994).PubMedCrossRefGoogle Scholar
  78. 78.
    K.S. Schluns, W.C. Kieper, S.C. Jameson and L. Lefrancois. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol 1:426–432 (2000).PubMedCrossRefGoogle Scholar
  79. 79.
    J.T. Tan, B. Ernst, W.C. Kieper, E. LeRoy, J. Sprent and C.D. Surh. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J Exp Med 195:1523–1532 (2002).PubMedCrossRefGoogle Scholar
  80. 80.
    M. Prlic, L. Lefrancois and S.C. Jameson. Multiple choices: regulation of memory CD8 T cell generation and homeostasis by interleukin (IL)-7 and IL-15. J Exp Med 195:F49–F52 (2002).PubMedCrossRefGoogle Scholar
  81. 81.
    T.C. Becker, E.J. Wherry, D. Boone, K. Murali-Krishna, R. Antia, A. Ma and R. Ahmed. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J Exp Med 195:1541–1548 (2002).PubMedCrossRefGoogle Scholar
  82. 82.
    J.J. Obar, S.G. Crist, E.K. Leung and E.J. Usherwood. IL-15-independent proliferative renewal of memory CD8+ T cells in latent gammaherpesvirus infection. J Immunol 173:2705–2714 (2004).PubMedGoogle Scholar
  83. 83.
    R. Dudani, Y. Chapdelaine, H.H. Faassen, D.K. Smith, H. Shen, L. Krishnan and S. Sad. Multiple mechanisms compensate to enhance tumor-protective CD8(+) T cell response in the long-term despite poor CD8(+) T cell priming initially: comparison between an acute versus a chronic intracellular bacterium expressing a model antigen. J Immunol 168:5737–5745 (2002).PubMedGoogle Scholar
  84. 84.
    Y. Belkaid, C.A. Piccirillo, S. Mendez, E.M. Shevach and D.L. Sacks. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420:502–507 (2002).PubMedCrossRefGoogle Scholar
  85. 85.
    J.H. Park, Q. Yu, B. Erman, J.S. Appelbaum, D. Montoya-Durango, H.L. Grimes and A. Singer. Suppression of IL7Ralpha transcription by IL-7 and other prosurvival cytokines: a novel mechanism for maximizing IL-7-dependent T cell survival. Immunity 21:289–302 (2004).PubMedCrossRefGoogle Scholar
  86. 86.
    B.M. Foxwell, D.A. Taylor-Fishwick, J.L. Simon, T.H. Page and M. Londei. Activation induced changes in expression and structure of the IL-7 receptor on human T cells. Int Immunol 4:277–282 (1992).PubMedCrossRefGoogle Scholar
  87. 87.
    C. Carini, M.F. McLane, K.H. Mayer and M. Essex. Dysregulation of interleukin-7 receptor may generate loss of cytotoxic T cell response in human immunodeficiency virus type 1 infection. Eur J Immunol 24:2927–2934 (1994).PubMedCrossRefGoogle Scholar
  88. 88.
    P.A. MacPherson, C. Fex, J. Sanchez-Dardon, N. Hawley-Foss and J.B. Angel. Interleukin-7 receptor expression on CD8(+) T cells is reduced in HIV infection and partially restored with effective antiretroviral therapy. J Acquir Immune Defic Syndr 28:454–457 (2001).PubMedGoogle Scholar
  89. 89.
    C. Mussini, M. Pinti, V. Borghi, M. Nasi, G. Amorico, E. Monterastelli, L. Moretti, L. Troiano, R. Esposito and A. Cossarizza. Features of ‘CD4-exploders’, HIV-positive patients with an optimal immune reconstitution after potent antiretroviral therapy. AIDS 16:1609–1616 (2002).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ester M. M. van Leeuwen
    • 1
  • Ineke J. M. ten Berge
    • 2
  • René A. W. van Lier
    • 1
  1. 1.Dept. of Experimental ImmunologyAcademic Medical CenterAmsterdamThe Netherlands
  2. 2.Department of Internal MedicineAcademic Medical CenterAmsterdam

Personalised recommendations