Regulation of Adaptive Immunity by Cells of the Innate Immune System: Bone Marrow Natural Killer Cells Inhibit T Cell Proliferation

  • Prachi P. Trivedi
  • Taba K. Amouzegar
  • Paul C. Roberts
  • Norbert A. Wolf
  • Robert H. Swanborg
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 590)


Natural killer (NK) cells represent the third largest population of lymphocytes after T and B cells and are derived from the same precursor cell, although they do not express antigen-specific receptors (Yokoyama et al., 2004). However, they can distinguish normal host cells from virus-infected or tumor cells and lyse the latter without prior immunological sensitization — hence the name “natural killer” cell (Trinchieri, 1989). It was determined that the NK cells recognize target cells because the latter are deficient in, or lack, the expression of host major histocompatibility (MHC) class I molecules (Karre et al., 1986).


Natural Killer Natural Killer Cell Myelin Basic Protein Natural Killer Cell Function Natural Killer Cell Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. J. Bartek and J. Lukas. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett 490:117–122 (2001).PubMedCrossRefGoogle Scholar
  2. T.C. Becker, S.M. Coley, E.J. Wherry and R. Ahmed. Bone marrow is a preferred site for homeostatic proliferation of memory CD8 T cells. J Immunol 174:1269–1273 (2005).PubMedGoogle Scholar
  3. J.N. Beilke, N.R. Kuhl, Kaer Van L. and R.G. Gill. NK cells promote islet allograft tolerance via a perforin-dependent mechanism. Nat Med 11:1059–1065 (2005).PubMedCrossRefGoogle Scholar
  4. O. Coqueret. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13:65–70 (2003).PubMedCrossRefGoogle Scholar
  5. N.Y. Crowe, J.M. Coquet, S.P. Berzins, K. Kyparissoudis, R. Keating, D.G. Pellicci, Y. Hayakawa, D.I. Godfrey and M.J. Smyth. Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med 202:1279–1288 (2005).PubMedCrossRefGoogle Scholar
  6. G. Ferlazzo, M.L. Tsang, L. Moretta, G. Melioli, R.M. Steinman and C. Munz. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 195:343–351 (2002).PubMedCrossRefGoogle Scholar
  7. S.L. Gaffen. Signaling domains of the interleukin 2 receptor. Cytokine 14:63–77 (2001).PubMedCrossRefGoogle Scholar
  8. F. Gerosa, B. Baldani-Guerra, C. Nisii, V. Marchesini, G. Carra and G. Trinchieri. Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 195:327–333 (2002).PubMedCrossRefGoogle Scholar
  9. K. Karre, H.-G. Ljunggren, G. Piontek and R. Kiessling. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defense strategy. Nature 319:675–678 (1986).PubMedCrossRefGoogle Scholar
  10. L.F. Kastrukoff, A. Lau, R. Wee, D. Zecchini, R. White and D.W. Paty. Clinical relapses of multiple sclerosis are associated with “novel” valleys in natural killer cell functional activity. J Neuroimmunol 145:103–114 (2003).PubMedCrossRefGoogle Scholar
  11. L.A. Koopman, H.D. Kopcow, B. Rybalov, J.E. Boyson, J.S. Orange, F. Schatz, R. Masch, C.J. Lockwood, A.D. Schachter, P.J. Park and J.L. Strominger. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med 198:1201–1212 (2003).PubMedCrossRefGoogle Scholar
  12. H.D. Kopcow, D.S.J. Allan, X. Chen, B. Rybalov, M.M. Andzeim, B. Ge and J.L. Strominger. Human decidual NK cells form immature activating synapses and are not cytotoxic. Proc Natl Acad Sci USA 102:15563–15568 (2005).PubMedCrossRefGoogle Scholar
  13. Z. Li, K.L. Lim, S.P. Mahesh, B. Liu and R.B. Nussenblatt. In vivo blockade of human IL-2 receptor induces expansion of CD56bright regulatory NK cells in patients with active uveitis. J Immunol 174:5187–5191 (2005).PubMedGoogle Scholar
  14. E.O. Long, D.N. Burshtyn, W.P. Clark, M. Peruzzi, S. Rajagopalan, S. Rojo, N. Wagtmann and C.C. Winter. Killer cell inhibitory receptors: diversity, specificity and function. Immunol Rev 155:135–144 (1997).PubMedCrossRefGoogle Scholar
  15. Y. Matsumoto, K. Kohyama, Y. Aikawa, T. Shin, Y. Kawazoe, Y. Suzuki and N. Tanuma. Role of natural killer cells and TCRgd T cells in acute autoimmune encephalomyelitis. Eur J Immunol 28:1681–1688 (1998).PubMedCrossRefGoogle Scholar
  16. I.B. Mazo, M. Honczarenko, H. Leung, L.L. Cavanaugh, R. Bonasio, W. Weninger, K. Engelke, L. Xia, R.P. EmEver, P.A. Koni, L.E. Silberstein and U.H. von Andrian. Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity 22:259–270 (2005).PubMedCrossRefGoogle Scholar
  17. A. Moretta, C. Bottino, M. Vitale, D. Pende, C. Cantoni, M.C. Mingari, R. Biassoni and L. Moretta. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 11:197–223 (2001).CrossRefGoogle Scholar
  18. F.E. Munschauer, L.A. Hartrich, C.C. Stewart and L. Jacobs. Circulating natural killer cells but not cytotoxic T lymphocytes are reduced in patients with active relapsing multiple sclerosis and little clinical disability as compared to controls. J Neuroimmunol 62:177–181 (1995).PubMedCrossRefGoogle Scholar
  19. D. Piccioli, S. Sbrana, E. Melandri and N.M. Valiante. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med 195:335–341 (2002).PubMedCrossRefGoogle Scholar
  20. R.B. Smeltz, N.A. Wolf and R.H. Swanborg. Inhibition of autoimmune T cell responses in the DA rat by bone marrow-derived natural killer cells in vitro: implications for autoimmunity. J Immunol 163:1390–1398 (1999).PubMedGoogle Scholar
  21. H.C. Su, K.B. Nguyen, T.P. Salazar-Mather, M.C. Ruzek, M.Y. Dalod and C.A. Biron. NK cell functions restrain T cell responses during viral infections. Eur J Immunol 31:3048–3055 (2001).PubMedCrossRefGoogle Scholar
  22. K. Takahashi, T. Aranami, M. Endoh, S. Miyake and T. Yamamura. The regulatory role of natural killer cells in multiple sclerosis. Brain 127:1917–1927 (2004).PubMedCrossRefGoogle Scholar
  23. K. Takeda and G. Dennert. The development of autoimmunity in C57BL/6 lpr mice correlates with the disappearance of natural killer type 1-positive cells: evidence for their suppressive action on bone marrow stem cell proliferation, B cell immunoglobulin secretion, and autoimmune symptoms. J Exp Med 177:155–164 (1993).PubMedCrossRefGoogle Scholar
  24. G. Trinchieri. Biology of natural killer cells. Adv Immunol 47:187–376 (1989).PubMedCrossRefGoogle Scholar
  25. P.P. Trivedi, P.C. Roberts, N.A. Wolf and R.H. Swanborg. NK cells inhibit T cell proliferation via p21-mediated cell cycle arrest. J Immunol 174:4590–4597 (2005).PubMedGoogle Scholar
  26. N.A. Wolf and R.H. Swanborg. DA rat NK+CD3-cells inhibit autoreactive T cell responses. J Neuroimmunol 119:81–87 (2001).PubMedCrossRefGoogle Scholar
  27. W. Xu, G. Fazekas, H. Hara and T. Tabira. Mechanism of natural killer cell regulatory role in experimental autoimmune encephalomyelitis. J Neuroimmunol 163:24–30 (2005).PubMedCrossRefGoogle Scholar
  28. W.M. Yokoyama, S. Kim and A.R. French. The dynamic life of natural killer cells. Annu Rev Immunol 22:405–429 (2004).PubMedCrossRefGoogle Scholar
  29. B.-N. Zhang, T. Yamamura, T. Kondo, M. Fujiwara and T. Tabira. Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells. J Exp Med 186: 1677–1687 (1997).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Prachi P. Trivedi
    • 1
  • Taba K. Amouzegar
    • 2
  • Paul C. Roberts
    • 2
  • Norbert A. Wolf
    • 2
  • Robert H. Swanborg
    • 2
  1. 1.Harvard UniversityCambridgeUSA
  2. 2.Wayne State University School of MedicineDetroitUSA

Personalised recommendations