Innate Tumor Immune Surveillance

  • Mark J. Smyth
  • Jeremy Swann
  • Yoshihiro Hayakawa
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 590)


The innate immune system is emerging as an important mediator of host response to tumor initiation, growth, and metastases. Several chemical carcinogenesis models in mice have implicated an important role for natural killer (NK) cells, γδ+ T cells, and a specialized CD1d-restricted population of T cells bearing NK cell receptors, called NKT cells1,2. The incidence of both methylcholanthrene (MCA)-induced fibrosarcoma and dimethylbenzanthracene (DMBA) and phorbol ester (TPA)-induced skin carcinomas is higher in mice lacking these vital innate immune cells. Furthermore, in allo-bone marrow transplantation (BMT), HLA class I disparities that induce NK cell alloreactions and GVHD also mediate strong graft-versus-leukemia (GVL) effects, producing higher engraftment rates and protecting patients from GVHD3,4. In murine MHC-mismatched transplant models with no donor T cell reactivity against the recipient, the pretransplant infusion of donor-vs.-recipient alloreactive NK cells obviated the need for high-intensity conditioning and conditioned the recipients to BMT without GVHD3,4. Several other studies also strongly support a key role for innate cells and mechanisms in controlling tumor initiation and growth5, 6, 7, 8.


Natural Killer Cell NKG2D Ligand NKG2D Receptor Tumor Immune Surveillance Activate NKG2D Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. 1.
    M.J. Smyth, K.Y. Thia, S.E. Street, E. Cretney, J.A. Trapani, M. Taniguchi, T. Kawano, S.B. Pelikan, N.Y. Crowe and D.I. Godfrey. Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 191:661–668 (2000)PubMedCrossRefGoogle Scholar
  2. 2.
    M. Girardi, D.E. Oppenheim, C.R. Steele, J.M. Lewis, E. Glusac, R. Filler, P. Hobby, B. Sutton, R.E. Tigelaar and A.C. Hayday. Regulation of cutaneous malignancy by gammadelta T cells. Science 294:605–609 (2001)PubMedCrossRefGoogle Scholar
  3. 3.
    L. Ruggeri, M. Capanni, M.F. Martelli and A. Velardi. Cellular therapy: exploiting NK cell alloreactivity in transplantation. Curr Opin Hematol 8:355–359 (2001)PubMedCrossRefGoogle Scholar
  4. 4.
    L. Ruggeri, M. Capanni, E. Urbani, K. Perruccio, W.D. Shlomchik, A. Tosti, S. Posati, D. Rogaia, F. Frassoni, F. Aversa, M.F. Martelli and A. Velardi. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100 (2002)PubMedCrossRefGoogle Scholar
  5. 5.
    S.E. Street, Y. Hayakawa, Y. Zhan, A.M. Lew, D. MacGregor, A.M. Jamieson, A. Diefenbach, H. Yagita, D.I. Godfrey and M.J. Smyth. Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and gammadelta T cells. J Exp Med 199:879–884 (2004)PubMedCrossRefGoogle Scholar
  6. 6.
    C. Curcio, E. Di Carlo, R. Clynes, M.J. Smyth, K. Boggio, E. Quaglino, M. Spadaro, M.P. Colombo, A. Amici, P.L. Lollini, P. Musiani and G. Forni. Nonredundant roles of antibody, cytokines, and perforin in the eradication of established Her-2/neu carcinomas. J Clin Invest 111:1161–1170 (2003)PubMedCrossRefGoogle Scholar
  7. 7.
    Z. Cui and M.C. Willingham. The effect of aging on cellular immunity against cancer in SR/CR mice. Cancer Immunol Immunother 53:473–478 (2004)PubMedCrossRefGoogle Scholar
  8. 8.
    G.P. Dunn, A.T. Bruce, K.C. Sheehan, V. Shankaran, R. Uppaluri, J.D. Bui, M.S. Diamond, C.M. Koebel, C. Arthur, J.M. White and R.D. Schreiber. A critical function for type I interferons in cancer immunoediting. Nat Immunol 6:722–729 (2005)CrossRefGoogle Scholar
  9. 9.
    M.J. Smyth. Type I interferon and cancer immunoediting. Nat Immunol 6:646–648 (2005)PubMedCrossRefGoogle Scholar
  10. 10.
    M. Colonna, A. Krug and M. Cella. Interferon-producing cells: on the front line in immune responses against pathogens. Curr Opin Immunol 14:373–379 (2002)PubMedCrossRefGoogle Scholar
  11. 11.
    J.P. Houchins, T. Yabe, C. McSherry and F.H. Bach. DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J Exp Med 173:1017–1020 (1991)PubMedCrossRefGoogle Scholar
  12. 12.
    S. Bauer, V. Groh, J. Wu, A. Steinle, J.H. Phillips, L.L. Lanier and T. Spies. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729 (1999)PubMedCrossRefGoogle Scholar
  13. 13.
    A. Cerwenka, A.B. Bakker, T. McClanahan, J. Wagner, J. Wu, J.H. Phillips and L.L. Lanier. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12:721–727 (2000)PubMedCrossRefGoogle Scholar
  14. 14.
    A. Diefenbach, A.M. Jamieson, S.D. Liu, N. Shastri and D.H. Raulet. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol 1:119–126 (2000)PubMedCrossRefGoogle Scholar
  15. 15.
    A. Cerwenka and L.L. Lanier. Ligands for natural killer cell receptors: redundancy or specificity. Immunol Rev 181:158–169 (2001)PubMedCrossRefGoogle Scholar
  16. 16.
    H.A. Stephens. MICA and MICB genes: can the enigma of their polymorphism be resolved? Trends Immunol 22:378–385 (2001)PubMedCrossRefGoogle Scholar
  17. 17.
    D. Cosman, J. Mullberg, C.L. Sutherland, W. Chin, R. Armitage, W. Fanslow, M. Kubin and N.J. Chalupny. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14:123–133 (2001)PubMedCrossRefGoogle Scholar
  18. 18.
    L.N. Carayannopoulos, O.V. Naidenko, D.H. Fremont and W.M. Yokoyama. Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. J Immunol 169:4079–4083 (2002)PubMedGoogle Scholar
  19. 19.
    V.M. Braud, D.S. Allan and A.J. McMichael. Functions of nonclassical MHC and non-MHC-encoded class I molecules. Curr Opin Immunol 11:100–108 (1999)PubMedCrossRefGoogle Scholar
  20. 20.
    V. Groh, S. Bahram, S. Bauer, A. Herman, M. Beauchamp and T. Spies. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA 93:12445–12450 (1996)PubMedCrossRefGoogle Scholar
  21. 21.
    J.A. Hamerman, K. Ogasawara and L.L. Lanier. Cutting edge: Toll-like receptor signaling in macrophages induces ligands for the NKG2D receptor. J Immunol 172:2001–2005 (2004)PubMedGoogle Scholar
  22. 22.
    D.H. Raulet. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3:781–790 (2003)PubMedCrossRefGoogle Scholar
  23. 23.
    A. Rolle, M. Mousavi-Jazi, M. Eriksson, J. Odeberg, C. Soderberg-Naucler, D. Cosman, K. Karre and C. Cerboni. Effects of human cytomegalovirus infection on ligands for the activating NKG2D receptor of NK cells: up-regulation of UL16-binding protein (ULBP)1 and ULBP2 is counteracted by the viral UL16 protein. J Immunol 171:902–908 (2003)PubMedGoogle Scholar
  24. 24.
    S. Gasser, S. Orsulic, E.J. Brown and D.H. Raulet. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436:1186–1190 (2005)PubMedCrossRefGoogle Scholar
  25. 25.
    A.M. Jamieson, A. Diefenbach, C.W. McMahon, N. Xiong, J.R. Carlyle and D.H. Raulet. The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity 17:19–29 (2002)PubMedCrossRefGoogle Scholar
  26. 26.
    D. Pende, P. Rivera, S. Marcenaro, C.C. Chang, R. Biassoni, R. Conte, M. Kubin, D. Cosman, S. Ferrone, L. Moretta and A. Moretta. Major histocompatibility complex class I-related chain A and UL16-binding protein expression on tumor cell lines of different histotypes: analysis of tumor susceptibility to NKG2D-dependent natural killer cell cytotoxicity. Cancer Res 62:6178–6186 (2002)PubMedGoogle Scholar
  27. 27.
    A. Diefenbach, E.R. Jensen, A.M. Jamieson and D.H. Raulet. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413:165–171 (2001)PubMedCrossRefGoogle Scholar
  28. 28.
    Y. Hayakawa, J.M. Kelly, J.A. Westwood, P.K. Darcy, A. Diefenbach, D. Raulet and M.J. Smyth. Cutting edge: tumor rejection mediated by NKG2D receptor-ligand interaction is dependent upon perforin. J Immunol 169:5377–5381 (2002)PubMedGoogle Scholar
  29. 29.
    M.J. Smyth, J. Swann, J.M. Kelly, E. Cretney, W.M. Yokoyama, A. Diefenbach, T.J. Sayers and Y. Hayakawa. NKG2D recognition and perforin effector function mediate effective cytokine immunotherapy of cancer. J Exp Med 200:1325–1335 (2004)PubMedCrossRefGoogle Scholar
  30. 30.
    J.A. Westwood, J.M. Kelly, J.E. Tanner, M.H. Kershaw, M.J. Smyth and Y. Hayakawa. Cutting edge: novel priming of tumor-specific immunity by NKG2D-triggered NK cell-mediated tumor rejection and Th1-independent CD4+ T cell pathway. J Immunol 172:757–761 (2004)PubMedGoogle Scholar
  31. 31.
    M.J. Smyth, D.I. Godfrey and J.A. Trapani. A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2:293–299 (2001)PubMedCrossRefGoogle Scholar
  32. 32.
    M.J. Smyth, J. Swann, E. Cretney, N. Zerafa, W.M. Yokoyama and Y. Hayakawa. NKG2D function protects the host from tumor initiation. J Exp Med 202:583–588 (2005)PubMedCrossRefGoogle Scholar
  33. 33.
    V. Shankaran, H. Ikeda, A.T. Bruce, J.M. White, P.E. Swanson, L.J. Old and R.D. Schreiber. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111 (2001)PubMedCrossRefGoogle Scholar
  34. 34.
    M.J. Smyth, N.Y. Crowe and D.I. Godfrey. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int Immunol 13:459–463 (2001)PubMedCrossRefGoogle Scholar
  35. 35.
    N.Y. Crowe, M.J. Smyth and D.I. Godfrey. A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J Exp Med 196:119–127 (2002)PubMedCrossRefGoogle Scholar
  36. 36.
    N.Y. Crowe, J.M. Coquet, S.P. Berzins, K. Kyparissoudis, R. Keating, D.G. Pellicci, Y. Hayakawa, D.I. Godfrey and M.J. Smyth. Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med 202:1279–1288 (2005)PubMedCrossRefGoogle Scholar
  37. 37.
    V. Groh, J. Wu, C. Yee and T. Spies. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738 (2002)PubMedCrossRefGoogle Scholar
  38. 38.
    H.R. Salih, H. Antropius, F. Gieseke, S.Z. Lutz, L. Kanz, H.G. Rammensee and A. Steinle. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102:1389–1396 (2003)PubMedCrossRefGoogle Scholar
  39. 39.
    D.E. Oppenheim, S.J. Roberts, S.L. Clarke, R. Filler, J.M. Lewis, R.E. Tigelaar, M. Girardi and A.C. Hayday. Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol 6:928–937 (2005)PubMedCrossRefGoogle Scholar
  40. 40.
    A. Moretta, C. Bottino, M. Vitale, D. Pende, C. Cantoni, M.C. Mingari, R. Biassoni and L. Moretta. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19:197–223 (2001)PubMedCrossRefGoogle Scholar
  41. 41.
    S.A. Rosenberg. Progress in human tumour immunology and immunotherapy. Nature 411:380–384 (2001)PubMedCrossRefGoogle Scholar
  42. 42.
    M.J. Smyth, M. Taniguchi and S.E. Street. The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J Immunol 165:2665–2670 (2000)PubMedGoogle Scholar
  43. 43.
    J. Brady, Y. Hayakawa, M.J. Smyth and S.L. Nutt. IL-21 induces the functional maturation of murine NK cells. J Immunol 172:2048–2058 (2004)PubMedGoogle Scholar
  44. 44.
    H. Okamura, H. Tsutsui, S. Kashiwamura, T. Yoshimoto and K. Nakanishi. Interleukin-18: a novel cytokine that augments both innate and acquired immunity. Adv Immunol 70:281–312 (1998)PubMedCrossRefGoogle Scholar
  45. 45.
    Y.I. Son, R.M. Dallal, R.B. Mailliard, S. Egawa, Z.L. Jonak and M.T. Lotze. Interleukin-18 (IL-18) synergizes with IL-2 to enhance cytotoxicity, interferon-gamma production, and expansion of natural killer cells. Cancer Res 61:884–888 (2001)PubMedGoogle Scholar
  46. 46.
    G. Wang, M. Tschoi, R. Spolski, Y. Lou, K. Ozaki, C. Feng, G. Kim, W.J. Leonard and P. Hwu. In vivo antitumor activity of interleukin 21 mediated by natural killer cells. Cancer Res 63:9016–9022 (2003)Google Scholar
  47. 47.
    H.L. Ma, M.J. Whitters, R.F. Konz, M. Senices, D.A. Young, M.J. Grusby, M. Collins and K. Dunussi-Joannopoulos. IL-21 activates both innate and adaptive immunity to generate potent antitumor responses that require perforin but are independent of IFN-gamma. J Immunol 171:608–615 (2003)PubMedGoogle Scholar
  48. 48.
    A. Moroz, C. Eppolito, Q. Li, J. Tao, C.H. Clegg and P.A. Shrikant. IL-21 enhances and sustains CD8+ T cell responses to achieve durable tumor immunity: comparative evaluation of IL-2, IL-15, and IL-21. J Immunol 173:900–909 (2004)PubMedGoogle Scholar
  49. 49.
    M.T. Kasaian, M.J. Whitters, L.L. Carter, L.D. Lowe, J.M. Jussif, B. Deng, K.A. Johnson, J.S. Witek, M. Senices, R.F. Konz, A.L. Wurster, D.D. Donaldson, M. Collins, D.A. Young and M.J. Grusby. IL-21 limits NK cell responses and promotes antigen-specific T cell activation: a mediator of the transition from innate to adaptive immunity. Immunity 16:559–569 (2002)PubMedCrossRefGoogle Scholar
  50. 50.
    R. Takaki, Y. Hayakawa, A. Nelson, P.V. Sivakumar, S. Hughes, M.J. Smyth and L.L. Lanier. IL-21 enhances tumor rejection through a NKG2D-dependent mechanism. J Immunol 175:2167–2173 (2005)PubMedGoogle Scholar
  51. 51.
    R. Zeng, R. Spolski, S.E. Finkelstein, S. Oh, P.E. Kovanen, C.S. Hinrichs, C.A. Pise-Masison, M.F. Radonovich, J.N. Brady, N.P. Restifo, J.A. Berzofsky and W.J. Leonard. Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med 201:139–148 (2005)PubMedCrossRefGoogle Scholar
  52. 52.
    M.J. Smyth, M.E. Wallace, S.L. Nutt, H. Yagita, D.I. Godfrey and Y. Hayakawa. Sequential activation of NKT cells and NK cells provides effective innate immunotherapy of cancer. J Exp Med 201:1973–1985 (2005)PubMedCrossRefGoogle Scholar
  53. 53.
    D.H. Kaplan, V. Shankaran, A.S. Dighe, E. Stockert, M. Aguet, L.J. Old and R.D. Schreiber. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95:7556–7561 (1998)PubMedCrossRefGoogle Scholar
  54. 54.
    S.E. Street, E. Cretney and M.J. Smyth. Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood 97:192–197 (2001)PubMedCrossRefGoogle Scholar
  55. 55.
    S.E. Street, J.A. Trapani, D. MacGregor and M.J. Smyth. Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J Exp Med 196:129–134 (2002)PubMedCrossRefGoogle Scholar
  56. 56.
    S. Mitra-Kaushik, J. Harding, J. Hess, R. Schreiber and L. Ratner. Enhanced tumorigenesis in HTLV-1 tax-transgenic mice deficient in interferon-gamma. Blood 104:3305–3311 (2004)Google Scholar
  57. 57.
    I. Gresser, F. Belardelli, C. Maury, M.T. Maunoury and M.G. Tovey. Injection of mice with antibody to interferon enhances the growth of transplantable murine tumors. J Exp Med 158:2095–2107 (1983)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Mark J. Smyth
    • 1
  • Jeremy Swann
    • 1
  • Yoshihiro Hayakawa
    • 1
  1. 1.Cancer Immunology ProgramPeter MacCallum Cancer CentreEast MelbourneAustralia

Personalised recommendations