Advertisement

The Yin and Yang of Adaptive Immunity in Allogeneic Hematopoietic Cell Transplantation: Donor Antigen-Presenting Cells Can Either Augment or Inhibit Donor T Cell Alloreactivity

  • Jian-Ming Li
  • Edmund K. Waller
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 590)

Abstract

The immunoregulatory activity of different donor bone marrow (BM) cell subsets has not yet been fully addressed in allogeneic transplantation. We studied whether manipulation of donor antigen-presenting cells (APC) can affect posttransplant immunity using a mouse model of allogeneic bone marrow transplantation (BMT). CD11b is a marker present on mature monocytes, granulocytes, and a subset of dendritic cells (DC). In order to manipulate the content of APC, we enriched or depleted CD11b+ cells from BM grafts using immuno-magnetic cell sorting. The effect of CD11b depletion on graft-versus-host disease (GvHD) and graft-versus-leukemia (GvL) was studied in a MHC fully mismatched model of allogeneic BMT using C57BL/6 → B10.BR transplants and LBRM cells, a B10.BR T cell leukemia cell line. Transplantation with CD11b partially or fully depleted BM and low-dose donor splenocytes conferred 40% long-term leukemia- free survival with minimal GvHD when supralethal doses of LBRM were administered before transplant, or 75 days after BMT. Higher levels of serum gamma interferon and expansion of spleen-derived CD4+ memory T cells were seen among recipients of CD11b-depleted BM compared to recipients of unmanipulated BM. Expansion of donor-spleen-derived T cells was inversely proportional to the content of CD11b+ cells in the BM graft. Thus, manipulating the content of APC subsets in donor BM by enriching or removing CD11b+ cells had a direct effect on post-transplant immunity and the balance between donor T cell activation (Yang) and donor T cell tolerance/anergy (Yin).

Keywords

Human Dendritic Cell Allogeneic Hematopoietic Cell Transplantation Bone Marrow Graft Biol Blood Marrow Transplant Cell Leukemia Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. 1.
    W.D. Shlomchik, M.S. Couzens, C.B. Tang, J. McNiff, M.E. Robert, J. Liu, M.J. Shlomchik and S.G. Emerson. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 285(5426):412–415 (1999).PubMedCrossRefGoogle Scholar
  2. 2.
    C.C. Matte, J. Liu, J. Cormier, B.E. Anderson, I. Athanasiadis, D. Jain, J. McNiff and W.D. Shlomchik. Donor APCs are required for maximal GVHD but not for GVL. Nat Med 10(9):987–992 (2004).PubMedCrossRefGoogle Scholar
  3. 3.
    E.K. Waller, H. Rosenthal, T.W. Jones, J. Peel, S. Lonial, A. Langston, I. Redei, I. Jurickova and M.W. Boyer. Larger numbers of CD4(bright) dendritic cells in donor bone marrow are associated with increased relapse after allogeneic bone marrow transplantation. Blood 97(10):2948–2956 (2001).PubMedCrossRefGoogle Scholar
  4. 4.
    V. Reddy, J.A. Iturraspe, A.C. Tzolas, H.U. Meier-Kriesche, J. Schold and J.R. Wingard. Low dendritic cell count after allogeneic hematopoietic stem cell transplantation predicts relapse, death and acute graft-versus-host disease. Blood 103(11):4330–4335 (2004).PubMedCrossRefGoogle Scholar
  5. 5.
    B. Pulendran, J.L. Smith, G. Caspary, K. Brasel, D Pettit, E. Maraskovsky and C.R. Maliszewski. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci USA 96(3):1036–1041 (1999).PubMedCrossRefGoogle Scholar
  6. 6.
    R. Maldonado-Lopez, T. De Smedt, P. Michel, J. Godfroid, B. Pajak, C. Heirman, K. Thielemans, O. Leo, J. Urbain and M. Moser. CD8alpha+ and CD8alpha− subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 189(3):587–592 (1999).PubMedCrossRefGoogle Scholar
  7. 7.
    M.C. Rissoan, V. Soumelis, N. Kadowaki, G. Grouard, F. Briere, R. de Waal Malefyt and Y.J. Liu. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283(5405):1183–1186 (1999).PubMedCrossRefGoogle Scholar
  8. 8.
    F.P. Siegal, N. Kadowaki, M. Shodell, P.A. Fitzgerald-Bocarsly, K. Shah, S. Ho, S. Antonenko and Y.J. Liu. The nature of the principal type 1 interferon-producing cells in human blood. Science 284(5421):1835–1837 (1999).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Cella, D. Jarrossay, F. Facchetti, O. Alebardi, H. Nakajima, A. Lanzavecchia and M. Colonna. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 5(8):919–923 (1999).PubMedCrossRefGoogle Scholar
  10. 10.
    F. Sallusto and A. Lanzavecchia. Mobilizing dendritic cells for tolerance, priming, and chronic inflammation. J Exp Med 189(4):611–614 (1999).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Lanzavecchia and F. Sallusto. The instructive role of dendritic cells on T cell responses: lineages, plasticity and kinetics. Curr Opin Immunol 13(3):291–298 (2001).PubMedCrossRefGoogle Scholar
  12. 12.
    M.F. Lipscomb and B.J. Masten. Dendritic cells: immune regulators in health and disease. Physiol Rev 82(1):97–130 (2002).PubMedGoogle Scholar
  13. 13.
    M. O’Keeffe, H. Hochrein, D. Vremec, I. Caminschi, J.L. Miller, E.M. Anders, L. Wu, M.H. Lahoud, S. Henri, B. Scott, P. Hertzog, L. Tatarczuch and K. Shortman. Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8(+) dendritic cells only after microbial stimulus. J Exp Med 196(10):1307–1319 (2002).PubMedCrossRefGoogle Scholar
  14. 14.
    M. O’Keeffe, H. Hochrein, D. Vremec, B. Scott, P. Hertzog, L. Tatarczuch and K. Shortman. Dendritic cell precursor populations of mouse blood: identification of the murine homologues of human blood plasmacytoid pre-DC2 and CD11c+ DC1 precursors. Blood 101(4):1453–1459 (2003).PubMedCrossRefGoogle Scholar
  15. 15.
    R. Pelayo, J. Hirose, J. Huang, K.P. Garrett, A. Delogu, M. Busslinger and P.W. Kincade. Derivation of 2 categories of plasmacytoid dendritic cells in murine bone marrow. Blood 105(11):4407–4415 (2005).PubMedCrossRefGoogle Scholar
  16. 16.
    C. Ruedl and M.F. Bachmann. CTL priming by CD8(+) and CD8(−) dendritic cells in vivo. Eur J Immunol 29(11):3762–3767 (1999).PubMedCrossRefGoogle Scholar
  17. 17.
    G. Schlecht, C. Leclerc and G. Dadaglio. Induction of CTL and nonpolarized Th cell responses by CD8alpha(+) and CD8alpha(−) dendritic cells. J Immunol 167(8):4215–4221 (2001).PubMedGoogle Scholar
  18. 18.
    A.D. Billiau, S. Fevery, O. Rutgeerts, W. Landuyt and M. Waer. Transient expansion of Mac1+Ly6-G+Ly6-C+ early myeloid cells with suppressor activity in spleens of murine radiation marrow chimeras: possible implications for the graft-versus-host and graft-versus-leukemia reactivity of donor lymphocyte infusions. Blood 102(2):740–748 (2003).PubMedCrossRefGoogle Scholar
  19. 19.
    J.M. Li and E.K. Waller. Donor antigen-presenting cells regulate T-cell expansion and antitumor activity after allogeneic bone marrow transplantation. Biol Blood Marrow Transplant 10(8):540–551 (2004).PubMedCrossRefGoogle Scholar
  20. 20.
    S. Gillis and S.B. Mizel. T-cell lymphoma model for the analysis of interleukin 1-mediated T-cell activation. Proc Natl Acad Sci USA 78(2):1133–1137 (1981).PubMedCrossRefGoogle Scholar
  21. 21.
    E.K. Waller, A.M. Ship, S. Mittelstaedt, T.W. Murray, R. Carter, I. Kakhniashvili, S. Lonial, J.T. Holden and M.W. Boyer. Irradiated donor leukocytes promote engraftment of allogeneic bone marrow in major histocompatibility complex mismatched recipients without causing graft-versus-host disease. Blood 94(9):3222–3233 (1999).PubMedGoogle Scholar
  22. 22.
    C.R. Giver, R.O. Montes, S. Mittestaedt, J.M. Li, D.L. Jaye, S. Lonial, M.W. Boyer and E.K. Waller. Ex vivo fludarabine exposure inhibits graft-versus-host activity of allogeneic T cells while preserving graft-versus-leukemia effects. Biol Blood Marrow Transplant 9(10):616–632 (2003).PubMedCrossRefGoogle Scholar
  23. 23.
    D.H. Fowler, K. Kurasawa, A. Husebekk, P.A. Cohen and R.E. Gress. Cells of Th2 cytokine phenotype prevent LPS-induced lethality during murine graft-versus-host reaction: regulation of cytokines and CD8+ lymphoid engraftment. J Immunol 152(3):1004–1013 (1994).PubMedGoogle Scholar
  24. 24.
    R.C. Budd, J.C. Cerottini, C. Horvath, C. Bron, T. Pedrazzini, R.C. Howe and H.R. MacDonald. Distinction of virgin and memory T lymphocytes: stable acquisition of the Pgp-1 glycoprotein concomitant with antigenic stimulation. J Immunol 138(10):3120–3129 (1987).PubMedGoogle Scholar
  25. 25.
    T.L. Walunas, D.S. Bruce, L. Dustin, D.Y. Loh and J.A. Bluestone. Ly-6C is a marker of memory CD8+ T cells. J Immunol 155(4):1873–1883 (1995).PubMedGoogle Scholar
  26. 26.
    J.M. Curtsinger, D.C. Lins and M.F. Mescher. CD8+ memory T cells (CD44high, Ly-6C+) are more sensitive than naive cells to (CD44low, Ly-6C−) to TCR/CD8 signaling in response to antigen. J Immunol 160(7):3236–3243 (1998).PubMedGoogle Scholar
  27. 27.
    K.R. Cooke, L. Kobzik, T.R. Martin, J. Brewer, J. Delmonte Jr., J.M. Crawford and J.L. Ferrara. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation, I: the roles of minor H antigens and endotoxin. Blood 88(8):3230–3239 (1996).PubMedGoogle Scholar
  28. 28.
    K.R. Cooke, W. Krenger, G. Hill, T.R. Martin, L. Kobzik, J. Brewer, R. Simmons, J.M. Crawford, M.R. van den Brink and J.L. Ferrara. Host reactive donor T cells are associated with lung injury after experimental allogeneic bone marrow transplantation. Blood 92(7):2571–2580 (1998).PubMedGoogle Scholar
  29. 29.
    J.M. Crawford. Graft-versus host disease of the liver. In Graft-versus-host disease, pp. 315–333. Ed. J.L. Ferrara, H.J. Deeg and S.J. Burakoff. New York: Marcel Dekker (1996).Google Scholar
  30. 30.
    A. Mowat. Intestinal graft-versus host disease. In Graft-versus-host disease, pp. 337–384. Ed. J.L. Ferrara, H.J. Deeg and S.J. Burakoff. New York: Marcel Dekker (1996).Google Scholar
  31. 31.
    D. Stull and S. Gillis. Constitutive production of interleukin 2 activity by a T cell hybridoma. J Immunol 126(5):1680–1683 (1981).PubMedGoogle Scholar
  32. 32.
    C. Kurts, H. Kosaka, F.R. Carbone, J.F. Miller and W.R. Heath. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8(+) T cells. J Exp Med 186(2):239–245 (1997).PubMedCrossRefGoogle Scholar
  33. 33.
    K. Inaba, S. Turley, F. Yamaide, T. Iyoda, K. Mahnke, M. Inaba, M. Pack, M. Subklewe, B. Sauter, D. Sheff, M. Albert, N. Bhardwaj, I. Mellman and R.M. Steinman. Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J Exp Med 188(11):2163–2173 (1998).PubMedCrossRefGoogle Scholar
  34. 34.
    E.K. Waller, H. Rosenthal and L. Sagar. DC2 effect on survival following allogeneic bone marrow transplantation. Oncology (Huntington) 16(1 Suppl 1):19–26 (2002).PubMedGoogle Scholar
  35. 35.
    R.S. Negrin, C.R. Kusnierz-Glaz, B.J. Still, J.R. Schriber, N.J. Chao, G.D. Long, C. Hoyle, W.W. Hu, S.J. Horning, B.W. Brown, K.G. Blume and S. Strober. Transplantation of enriched and purged peripheral blood progenitor cells from a single apheresis product in patients with non-Hodgkin’s lymphoma. Blood 85(11):3334–3341 (1995).PubMedGoogle Scholar
  36. 36.
    C. Arber, A. BitMansour, T.E. Sparer, J.P. Higgins, E.S. Mocarski, I.L. Weissman, J.A. Shizuru and J.M. Brown. Common lymphoid progenitors rapidly engraft and protect against lethal murine cytomegalovirus infection after hematopoietic stem cell transplantation. Blood 102(2):421–428 (2003).PubMedCrossRefGoogle Scholar
  37. 37.
    S.D. Nimer, J. Giorgi, J.L. Gajewski, N. Ku, G.J. Schiller, K. Lee, M. Territo, W. Ho, S. Feig, M. Selch, V. Isacescu, T.A. Reichert and R.E. Champlin. Selective depletion of CD8+ cells for prevention of graft-versus-host disease after bone marrow transplantation: a randomized controlled trial. Transplantation 57(1):82–87 (1994).PubMedCrossRefGoogle Scholar
  38. 38.
    E.P. Alyea, R.J. Soiffer, C. Canning, D. Neuberg, R. Schlossman, C. Pickett, H. Collins, Y. Wang, K.C. Anderson and J. Ritz. Toxicity and efficacy of defined doses of CD4(+) donor lymphocytes for treatment of relapse after allogeneic bone marrow transplant. Blood 91(10):3671–3680 (1998).PubMedGoogle Scholar
  39. 39.
    S. Giralt, J. Hester, Y. Huh, C. Hirsch-Ginsberg, G. Rondon, D. Seong, M. Lee, J. Gajewski, K. Van Besien, I. Khouri, R. Mehra, D. Przepiorka, M. Korbling, M. Talpaz, H. Kantarjian, H. Fischer, A. Deisseroth and R. Champlin. CD8-depleted donor lymphocyte infusion as treatment for relapsed chronic myelogenous leukemia after allogeneic bone marrow transplantation. Blood 86(11):4337–4343 (1995).PubMedGoogle Scholar
  40. 40.
    K.R. Oettel, O.H. Wesly, M.R. Albertini, J.A. Hank, O. Iliopolis, J.A. Sosman, K. Voelkerding, S.Q. Wu, S.S. Clark and P.M. Sondel. Allogeneic T-cell clones able to selectively destroy Philadelphia chromosome-bearing (Ph1+) human leukemia lines can also recognize Ph1-cells from the same patient. Blood 83(11):3390–3402 (1994).PubMedGoogle Scholar
  41. 41.
    G.R. Hill, J.M. Crawford, K.R. Cooke, Y.S. Brinson, L. Pan and J.L. Ferrara. Total body irradiation and acute graft-versus-host disease: the role of gastrointestinal damage and inflammatory cytokines. Blood 90(8):3204–3213 (1997).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jian-Ming Li
    • 1
  • Edmund K. Waller
    • 1
  1. 1.Emory UniversityAtlantaUSA

Personalised recommendations