The Function of Local Lymphoid Tissues in Pulmonary Immune Responses

  • Juan Moyron-Quiroz
  • Javier Rangel-Moreno
  • Damian M. Carragher
  • Troy D. Randall
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 590)


Primary adaptive immune responses are initiated in secondary lymphoid organs, such as spleen, lymph nodes, and Peyer’s patches. These lymphoid organs recruit naive lymphocytes1 as well as activated antigen-presenting cells (APCs)2, and facilitate lymphocyte activation, expansion, and differentiation. For example, infection of the lung with influenza virus leads to activation of pulmonary dendritic cells, which engulf local antigens and traffic to the draining mediastinal lymph node (MLN)3, where they home to the T cell area surrounding the high endothelial venules (HEVs) (Figure 1). Naive B and T cells are constantly recruited into the lymph node via these HEVs and rapidly become activated as they encounter cognate antigen on APCs. Activated lymphocytes subsequently expand and differentiate into effector cells. For T cells, this differentiation primarily occurs in the T cell zone. In contrast, B cells rapidly expand and are selected for high-affinity variants in the germinal centers (GCs) that develop on the border between the T cell area and the B cell follicle. As the immune response progresses, effector B and T cells leave the lymph node via the efferent lymphatics, which drain into the blood via the thoracic duct. Once in the blood, activated effector cells recirculate to sites of inflammation, including the original site of infection in the lung, and use their effector functions to combat infection. An important point of this model is that, while infection occurs locally in non-lymphoid organs, primary immune responses are initiated centrally in secondary lymphoid organs. This scheme is outlined in Figure 1.


Lymphoid Tissue Germinal Center Lymphoid Organ Cell Follicle Follicular Dendritic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. 1.
    E.C. Butcher and L.J. Picker. Lymphocyte homing and homeostasis. Science 272:60–62 (1996).PubMedCrossRefGoogle Scholar
  2. 2.
    J.G. Cyster. Chemokines and the homing of dendritic cells to the T cell areas of lymphoid organs. J Exp Med 189:447–450 (1999).PubMedCrossRefGoogle Scholar
  3. 3.
    K.L. Legge and T.J. Braciale. Accelerated migration of respiratory dendritic cells to the regional lymph nodes is limited to the early phase of pulmonary infection. Immunity 18:265–277 (2003).PubMedCrossRefGoogle Scholar
  4. 4.
    C.C. Goodnow. Chance encounters and organized rondezvous. Immunol Rev 156:5–10 (1997).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Balazs, F. Martin, T. Zhou and J. Kearney. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity 17:341–352 (2002).PubMedCrossRefGoogle Scholar
  6. 6.
    M.R. Neutra, A. Frey and J.P. Kraehnenbuhl. Epithelial M cells: gateways of mucosal infection and immunization. Cell 86:345–348 (1996).PubMedCrossRefGoogle Scholar
  7. 7.
    P.D. Rennert, J.L. Browning, R.E. Mebius, F. Mackay and P.S. Hochman. Surface lymphotoxin a/b complex is required for the development of peripheral lymphoid organs. J Exp Med 184:1999–2006 (1996).PubMedCrossRefGoogle Scholar
  8. 8.
    P. de Togni, J. Goellner, N.H. Ruddle, P.R. Streeter, A. Fick, S. Mariathasan, S.C. Smith, R. Carlson, L.P. Shornick and J. Strauss-Schoenberger. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264:703–707 (1994).PubMedCrossRefGoogle Scholar
  9. 9.
    P.A. Koni, R. Sacca, P. Lawton, J.L. Browning, N.H. Ruddle and R.A. Flavell. Distinct roles in lymphoid organogenisis for lymphotoxins a and b revealed in lymphotoxin b deficient mice. Immunity 6:491–500 (1997).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Futterer, K. Mink, A. Luz, M.H. Kosco-Vilbois and K. Pfeffer. The lymphotoxin b receptor controls organogenisis and affinity maturation in peripheral lymphoid tissues. Immunity 9:59–70 (1998).PubMedCrossRefGoogle Scholar
  11. 11.
    S. Miyawaki, Y. Nakamura, H. Suzuka, M. Koba, R. Yasumizu, S. Ikehara and Y. Shibata. A new mutation, aly, that induces a generalized lack of lymph nodes accompanied by immunodeficiency in mice. Eur J Immunol 24:429–434 (1994).PubMedCrossRefGoogle Scholar
  12. 12.
    K. Honda, H. Nakano, H. Yoshida, S. Nishikawa, P. Rennert, K. Ikuta, M. Tamechika, K. Yamaguchi, T. Fukumoto, T. Chiba and S.I. Nishikawa. Molecular basis for hematopoietic/mesenchymal interaction during initiation of Peyer’s patch organogenesis. J Exp Med 193:621–630 (2001).PubMedCrossRefGoogle Scholar
  13. 13.
    S.A. Luther, K.M. Ansel and J.G. Cyster. Overlapping roles of CXCL13, interleukin 7 receptor alpha, and CCR7 ligands in lymph node development. J Exp Med 197:1191–1198 (2003).PubMedCrossRefGoogle Scholar
  14. 14.
    K.M. Ansel, V.N. Ngo, P.L. Hayman, S.A. Luther, R. Forster, J.D. Sedgwick, J.L. Browning, M. Lipp and J.G. Cyster. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406:309–314 (2000).PubMedCrossRefGoogle Scholar
  15. 15.
    M.D. Gunn, K. Tangemann, C. Tam, J.D. Cyster, S.D. Rosen and L.T. Williams. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci 95:258–263 (1998).PubMedCrossRefGoogle Scholar
  16. 16.
    M.D. Gunn, S. Kyuwa, C. Tam, T. Kakiuchi, A. Matsuzawa, L.T. Williams and H. Nakano. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 189:451–460 (1999).PubMedCrossRefGoogle Scholar
  17. 17.
    V.N. Ngo, H. Korner, M.D. Gunn, K.N. Schmidt, D.S. Riminton, M.D. Cooper, J.L. Browning, J.D. Sedgewick and J.G. Cyster. Lymphotoxin a/b and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J Exp Med 189:403–412 (1999).PubMedCrossRefGoogle Scholar
  18. 18.
    S.L. Constant, J.L. Brogdon, D.A. Piggott, C.A. Herrick, I. Visintin, N.H. Ruddle and K. Bottomly. Resident lung antigen-presenting cells have the capacity to promote Th2 T cell differentiation in situ. J Clin Invest 110:1441–1448 (2002).PubMedCrossRefGoogle Scholar
  19. 19.
    F.E. Lund, S. Partida-Sanchez, B.O. Lee, K.L. Kusser, L. Hartson, R.J. Hogan, D.L. Woodland and T.D. Randall. Lymphotoxin-alpha-deficient mice make delayed, but effective, t and b cell responses to influenza. J Immunol 169:5236–5243 (2002).PubMedGoogle Scholar
  20. 20.
    F. Amiot, P. Vuong, M. Desfontaines, C.D. Pater and F.M. Liance. Secondary alveolar echinococcosis in lymphotoxin-a and tumour necrosis factor-a deficient mice: exacerbation of Echinococcus multilocularis larval growth is associated with cellular changes in the periparasitic granuloma. Parisite Immunol 21:475–483 (1999).CrossRefGoogle Scholar
  21. 21.
    T.A. Banks, B.T. Rouse, M.K. Kerley, P.J. Blair, V.L. Godfrey, N.A. Kuklin, D.M. Bouley, J. Thomas, S. Kanangat and M.L. Mucenski. Lymphotoxin a deficient mice: effects on secondary lymphoid organ development and humoral immune responsiveness. J Immunol 155:1685–1693 (1995).PubMedGoogle Scholar
  22. 22.
    D.P. Berger, D. Naniche, M.T. Crowley, P.A. Koni, R.A. Flavell and M.B.A. Oldstone. Lymphotoxin-b-deficient mice show defective antiviral immunity. Virology 260:136–147 (1999).PubMedCrossRefGoogle Scholar
  23. 23.
    U. Kumaraguru, I.A. Davis, S. Deshpande, S.S. Tevethis and B.T. Rouse. Lymphotoxin a-/- mice develop functionally impaired CD8+ t cell responses and fail to contain virus infection of the central nervous system. J Immunol 166:1066–1074 (2001).PubMedGoogle Scholar
  24. 24.
    B.J. Lee, S. Santee, S. Von Gesjen, C.F. Ware and S.R. Sarawar. Lymphotoxin-a-deficient mice can clear a productive infection with murine gammaherpesvirus 68 but fail to develop spenomegaly or lymphocytosis. J Virol 74:2786–2792 (2000).PubMedCrossRefGoogle Scholar
  25. 25.
    A. Harmsen, K. Kusser, L. Hartson, M. Tighe, M.J. Sunshine, J.D. Sedgwick, Y. Choi, D.R. Littman and T.D. Randall. Organogenesis of Nasal Associated Lymphoid Tissue (NALT) occurs independently of lymphotoxin-α (LTα) and retinoic acid receptor-related orphan receptor-γ, but the organization of NALT is LTα-dependent. J Immunol 168:986–990 (2002).PubMedGoogle Scholar
  26. 26.
    J. Rangel-Moreno, J. Moyron-Quiroz, K. Kusser, L. Hartson, H. Nakano and T.D. Randall. Role of CXC chemokine ligand 13, CC chemokine ligand (CCL) 19, and CCL21 in the organization and function of nasal-associated lymphoid tissue. J Immunol 175:4904–4913 (2005).PubMedGoogle Scholar
  27. 27.
    M. Matsumoto, S. Mariathasan, M.H. Nahm, F. Baranyay, J.J. Peschon and D.D. Chaplin. Role of lymphotoxin and the type 1 TNF receptor in the formation of germinal centers. Science 271:1289–1291 (1996).PubMedCrossRefGoogle Scholar
  28. 28.
    M. Matsumoto, S.F. Lo, C.J.L. Carruthers, J. Min, S. Mariathasan, G. Huang, D.R. Plas, S.M. Martin, R.S. Geha, M.H. Nahm and D.D. Chaplin. Affinity maturation without germinal centers in lymphotoxin a deficient mice. Nature 382:462–466 (1996).PubMedCrossRefGoogle Scholar
  29. 29.
    J.E. Moyron-Quiroz, J. Rangel-Moreno, K. Kusser, L. Hartson, F. Sprague, S. Goodrich, D.L. Woodland, F.E. Lund and T.D. Randall. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat Med 10:927–934 (2004).PubMedCrossRefGoogle Scholar
  30. 30.
    G. Kelsoe. The germinal center: a crucible for lymphocyte selection. Semin Immunol 8:179–184 (1996).PubMedCrossRefGoogle Scholar
  31. 31.
    D.L. Woodland and T.D. Randall. Anatomical features of anti-viral immunity in the respiratory tract. Semin Immunol 16:163–170 (2004).PubMedCrossRefGoogle Scholar
  32. 32.
    J. Bienenstock, N. Johnston and D.Y. Perey. Bronchial lymphoid tissue, I: morphologic characteristics. Lab Invest 28:686–692 (1973).PubMedGoogle Scholar
  33. 33.
    J. Bienenstock and N. Johnston. A morphologic study of rabbit bronchial lymphoid aggregates and lymphoepithelium. Lab Invest 35:343–348 (1976).PubMedGoogle Scholar
  34. 34.
    T. Sminia, G.J. van der Brugge-Gamelkoorn and S.H. Jeurissen. Structure and function of bronchus-associated lymphoid tissue (BALT). Crit Rev Immunol 9:119–150 (1989).PubMedGoogle Scholar
  35. 35.
    S. Delventhal, A. Hensel, K. Petzoldt and R. Pabst. Effects of microbial stimulation on the number, size and activity of bronchus-associated lymphoid tissue (BALT) structures in the pig. Int J Exp Path 73:351–357 (1992).Google Scholar
  36. 36.
    R. Pabst and I. Gehrke. Is the bronchus-associated lymphoid tissue (BALT) an integral structure of the lung in normal mammals, including humans? Am J Respir Cell Mol Biol 3:131–135 (1990).PubMedGoogle Scholar
  37. 37.
    I. Richmond, G.E. Pritchard, T. Ashcroft, A. Avery, P.A. Corris and E.H. Walters. Bronchus associated lymphoid tissue (BALT) in human lung. its distribution in smokers and non-smokers:Thorax 48, 1130–1134 (1993).PubMedCrossRefGoogle Scholar
  38. 38.
    T. Tshering and R. Pabst. Bronchus associated lymphoid tissue (BALT) is not present in normal adult lung but in different diseases. Pathobiology 68:1–8 (2000).CrossRefGoogle Scholar
  39. 39.
    J. J. Lee, M.P. McGarry, S.C. Farmer, K.L. Denzler, K.A. Larson, P.E. Carrigan, I.E. Brenneise, M.A. Horton, A. Haczku, E.W. Gelfan, G.D. Leikauf and N.A. Lee. Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomonic of asthma. J Exp Med 185:2143–2156 (1997).PubMedCrossRefGoogle Scholar
  40. 40.
    S. Goya, H. Matsuoka, M. Mori, H. Morishita, H. Kida, Y. Kobashi, T. Kato, Y. Taguchi, T. Osaki, I. Tachibana, N. Nishimoto, K. Yoshizaki, I. Kawase, and S. Hayashi. Sustained interleukin-6 signalling leads to the development of lymphoid organ-like structures in the lung. J Pathol 200:82–87 (2003).PubMedCrossRefGoogle Scholar
  41. 41.
    B. Xu, N. Wagner, L.N. Pham, V. Magno, Z. Shan, E.C. Butcher and S.A. Michie. Lymphocyte homing to bronchus-associated lymphoid tissue (BALT) is mediated by L-selectin/PNAd, alpha4beta1 integrin/VCAM-1, and LFA-1 adhesion pathways. J Exp Med 197:1255–1267 (2003).PubMedCrossRefGoogle Scholar
  42. 42.
    R.K. Chin, J.C. Lo, O. Kim, S.E. Blink, P.A. Christiansen, P. Peterson, Y. Wang, C. Ware and Y.X. Fu. Lymphotoxin pathway directs thymic Aire expression. Nat Immunol 4:1121–1127 (2003).PubMedCrossRefGoogle Scholar
  43. 43.
    H.D. Chen, A.E. Fraire, I. Joris, M.A. Brehm, R.M. Welsh and L.K. Selin. Memory CD8+ T cells in heterologous antiviral immunity and immunopathology in the lung. Nat Immunol 2:1067–1076 (2001).PubMedCrossRefGoogle Scholar
  44. 44.
    J.H. Vernooy, M.A. Dentener, R.J. van Suylen, W.A. Buurman and E.F. Wouters. Long-term intratracheal lipopolysaccharide exposure in mice results in chronic lung inflammation and persistent pathology. Am J Respir Cell Mol Biol 26:152–159 (2002).PubMedGoogle Scholar
  45. 45.
    N.H. Ruddle. Lymphoid neo-organogenesis: lymphotoxin’s role in inflammation and development. Immunol Res 19:119–125 (1999).PubMedGoogle Scholar
  46. 46.
    A. Kratz, A. Campos-Neto, M.S. Hanson and N.H. Ruddle. Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J Exp Med 183:1461–1472 (1996).PubMedCrossRefGoogle Scholar
  47. 47.
    P. Hjelmstrom, J. Fjell, T. Nakagawa, R. Sacca, C. Cuff and N. Ruddle. Lymphoid tissue homing chemokines are expressed in chronic inflammation. Am J Pathol 156:1133–1138 (2000).PubMedGoogle Scholar
  48. 48.
    S.A. Luther, T. Lopez, W. Bai, D. Hanahan and J.G. Cyster. BLC expression in pancreatic islets causes b cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity 12:471–481 (2000).PubMedCrossRefGoogle Scholar
  49. 49.
    S.A. Luther, A. Bidgol, D.C. Hargreaves, A. Schmidt, Y. Xu, J. Paniyadi, M. Matloubian and J.G. Cyster. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol 169:424–433 (2002).PubMedGoogle Scholar
  50. 50.
    R. Sacca, C.A. Cuff, W. Lesslauer and N.H. Ruddle. Differential activities of secreted lymphotoxin-alpha3 and membrane lymphotoxin-alpha1beta2 in lymphotoxin-induced inflammation: critical role of TNF receptor 1 signaling. J Immunol 160:485–491 (1998).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Juan Moyron-Quiroz
    • 1
  • Javier Rangel-Moreno
    • 1
  • Damian M. Carragher
    • 1
  • Troy D. Randall
    • 1
  1. 1.Trudeau InstituteSaranac LakeUSA

Personalised recommendations