Understanding the Role of Innate Immunity in the Mechanism of Action of the Live Attenuated Yellow Fever Vaccine 17D

  • Troy D. Querec
  • Bali Pulendran
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 590)


The live attenuated Yellow Fever Vaccine 17D [YF-17D] is one of the most effective vaccines available. During the 70 years since its development, the vaccine has been administered to more than 400 million people worldwide with minimal incident of severe side effects. Despite its efficacy, the immunological mechanisms that mediate its efficacy are poorly understood. Here we review the development of YF-17D in a historical context, and then present some emerging evidence which suggests that YF-17D activates multiple Toll-like receptors (TLRs) on dendritic cells (DCs) to elicit a broad spectrum of innate and adaptive immune responses. Interestingly, the resulting adaptive immune responses are characterized by a mixed T helper cell (Th)1/Th2 cytokine profile and antigenspecific CD8(+) T cells, and distinct TLRs appear to differentially control the Th1/Th2 balance. These data offer some new insights into the molecular mechanism of action of YF-17D, and highlight the potential of vaccination strategies that use combinations of different TLR ligands to stimulate polyvalent immune responses.


West Nile Virus Adaptive Immune Response Yellow Fever Yellow Fever Virus Yellow Fever Vaccine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. 1.
    T.P. Monath. Milestones the conquest of yellow fever. In Microbe hunters: then and now. Ed. H. Koprowski and M.B.A. Oldstone. Lansing, MI: Medi-Ed Press (1996).Google Scholar
  2. 2.
    M. Theiler and H.H. Smith. The effect of prolonged cultivation in vitro upon the pathogenicity of yellow fever virus. J Exp Med 65(6):767–786 (1937).CrossRefPubMedGoogle Scholar
  3. 3.
    M. Theiler and H.H. Smith. The use of yellow fever virus modified by in vitro cultivation for human immunization. J Exp Med 65:787–800 (1937). Rev Med Virol 10(1):6–16; discussion 13–15 (2000).CrossRefPubMedGoogle Scholar
  4. 4.
    M. Theiler and H.H. Smith. The use of yellow fever virus modified by in vitro cultivation for human immunization. J Exp Med 65(6):787–800 (1937).CrossRefPubMedGoogle Scholar
  5. 5.
    C.S. Hahn, J.M. Dalrymple, J.H. Strauss and C.M. Rice. Comparison of the virulent asibi strain of yellow fever virus with the 17d vaccine strain derived from it. Proc Natl Acad Sci USA 84(7):2019–2023 (1987).PubMedCrossRefGoogle Scholar
  6. 6.
    S.L. Allison, J. Schalich, K. Stiasny, C.W. Mandl and F.X. Heinz. Mutational evidence for an internal fusion peptide in flavivirus envelope proteine. J Virol 75(9):4268–4275 (2001).PubMedCrossRefGoogle Scholar
  7. 7.
    K.D. Ryman, H. Xie, T.N. Ledger, G.A. Campbell and A.D. Barrett. Antigenic variants of yellow fever virus with an altered neurovirulence phenotype in mice. Virology 230(2):376–380 (1997).PubMedCrossRefGoogle Scholar
  8. 8.
    L. Vlaycheva, M. Nickells, D.A. Droll and T.J. Chambers. Yellow fever 17d virus: Pseudo-revertant suppression of defective virus penetration and spread by mutations in domains ii and iii of the e protein. Virology 327(1):41–49 (2004).PubMedCrossRefGoogle Scholar
  9. 9.
    F. Guirakhoo, Z. Zhang, G. Myers, B.W. Johnson, K. Pugachev, R. Nichols, N. Brown, I. Levenbook, K. Draper, S. Cyrek, J. Lang, C. Fournier, B. Barrere, S. Delagrave and T.P. Monath. A single amino acid substitution in the envelope protein of chimeric yellow fever-dengue 1 vaccine virus reduces neurovirulence for suckling mice and viremia/viscerotropism for monkeys. J. Virol. 78(18):9998–10008 (2004).PubMedCrossRefGoogle Scholar
  10. 10.
    K.D. Ryman, T.N. Ledger, G.A. Campbell, S.J. Watowich and A.D. Barrett. Mutation in a 17d-204 vaccine substrain-specific envelope protein epitope alters the pathogenesis of yellow fever virus in mice. Virology 244(1):59–65 (1998).PubMedCrossRefGoogle Scholar
  11. 11.
    T.P. Monath, J. Arroyo, I. Levenbook, Z.X. Zhang, J. Catalan, K. Draper and F. Guirakhoo. Single mutation in the flavivirus envelope protein hinge region increases neurovirulence for mice and monkeys but decreases viscerotropism for monkeys: relevance to development and safety testing of live attenuated vaccines. J Virol 76(4):1932–1943 (2002).PubMedCrossRefGoogle Scholar
  12. 12.
    T.J. Chambers and M. Nickells. Neuroadapted yellow fever virus 17d: Genetic and biological characterization of a highly mouse-neurovirulent virus and its infectious molecular clone. J Virol 75(22):10912–10922 (2001).PubMedCrossRefGoogle Scholar
  13. 13.
    J.J. Schlesinger, S. Chapman, A. Nestorowicz, C.M. Rice, T.E. Ginocchio and T.J. Chambers. Replication of yellow fever virus in the mouse central nervous system: comparison of neuroadapted and non-neuroadapted virus and partial sequence analysis of the neuroadapted strain. J Gen Virol 77(Pt 6):1277–1285 (1996).PubMedGoogle Scholar
  14. 14.
    V. Proutski, M.W. Gaunt, E.A. Gould and E.C. Holmes. Secondary structure of the 3’-untranslated region of yellow fever virus: implications for virulence, attenuation and vaccine development. J Gen Virol 78(Pt 7):1543–1549 (1997).PubMedGoogle Scholar
  15. 15.
    B. Reinhardt, R. Jaspert, M. Niedrig, C. Kostner and J. L’Age-Stehr. Development of viremia and humoral and cellular parameters of immune activation after vaccination with yellow fever virus strain 17d: a model of human flavivirus infection. J Med Virol 56(2):159–167 (1998).PubMedCrossRefGoogle Scholar
  16. 16.
    F.N. Macnamara. A clinico-pathological study of yellow fever in nigeria. West Afr Med J 6(4):137–146 (1957).PubMedGoogle Scholar
  17. 17.
    U.T. Hacker, T. Jelinek, S. Erhardt, A. Eigler, G. Hartmann, H.D. Nothdurft and S. Endres. In vivo synthesis of tumor necrosis factor-alpha in healthy humans after live yellow fever vaccination. J Infect Dis 177(3):774–778 (1998).PubMedGoogle Scholar
  18. 18.
    E.F. Wheelock and W.A. Sibley. Circulating virus, interferon and antibody after vaccination with the 17-d strain of yellow-fever virus. N Engl J Med 273:194–198 (1965).PubMedCrossRefGoogle Scholar
  19. 19.
    V. Bonnevie-Nielsen, I. Heron, T.P. Monath and C.H. Calisher. Lymphocytic 2′,5′-oligoadenylate synthetase activity increases prior to the appearance of neutralizing antibodies and immunoglobulin m and immunoglobulin g antibodies after primary and secondary immunization with yellow fever vaccine. Clin Diagn Lab Immunol 2(3):302–306 (1995).PubMedGoogle Scholar
  20. 20.
    J. Lang, J. Zuckerman, P. Clarke, P. Barrett, C. Kirkpatrick and C. Blondeau. Comparison of the immunogenicity and safety of two 17d yellow fever vaccines. Am J Trop Med Hyg 60(6):1045–1050 (1999).PubMedGoogle Scholar
  21. 21.
    M. Niedrig, M. Lademann, P. Emmerich and M. Lafrenz. Assessment of igg antibodies against yellow fever virus after vaccination with 17d by different assays: Neutralization test, haemagglutination inhibition test, immunofluorescence assay and elisa. Trop Med Int Health 4(12):867–871 (1999).PubMedCrossRefGoogle Scholar
  22. 22.
    J.D. Poland, C.H. Calisher, T.P. Monath, W.G. Downs and K. Murphy. Persistence of neutralizing antibody 30–35 years after immunization with 17d yellow fever vaccine. Bull World Health Organ 59(6):895–900 (1981).PubMedGoogle Scholar
  23. 23.
    V.E. Belmusto-Worn, J.L. Sanchez, K. McCarthy, R. Nichols, C.T. Bautista, A.J. Magill, G. Pastor-Cauna, C. Echevarria, V.A. Laguna-Torres, B.K. Samame, M.E. Baldeon, J.P. Burans, J.G. Olson, P. Bedford, S. Kitchener and T.P. Monath. Randomized, double-blind, phase iii, pivotal field trial of the comparative immunogenicity, safety, and tolerability of two yellow fever 17d vaccines (arilvax and yf-vax) in healthy infants and children in Peru. Am J Trop Med Hyg 72(2):189–197 (2005).PubMedGoogle Scholar
  24. 24.
    T.P. Monath, R. Nichols, W.T. Archambault, L. Moore, R. Marchesani, J. Tian, R.E. Shope, N. Thomas, R. Schrader, D. Furby and P. Bedford. Comparative safety and immunogenicity of two yellow fever 17d vaccines (arilvax and yf-vax) in a phase iii multicenter, double-blind clinical trial. Am J Trop Med Hyg 66(5):533–541 (2002).PubMedGoogle Scholar
  25. 25.
    T.P. Monath. Neutralizing antibody responses in the major immunoglobulin classes to yellow fever 17d vaccination of humans. Am J Epidemiol 93(2):122–129 (1971).PubMedGoogle Scholar
  26. 26.
    S. Daffis, R.E. Kontermann, J. Korimbocus, H. Zeller, H.D. Klenk and J. Ter Meulen. Antibody responses against wild-type yellow fever virus and the 17d vaccine strain: characterization with human monoclonal antibody fragments and neutralization escape variants. Virology 337(2):262–272 (2005).PubMedCrossRefGoogle Scholar
  27. 27.
    J.J. Schlesinger, M.W. Brandriss, J.R. Putnak and E.E. Walsh. Cell surface expression of yellow fever virus non-structural glycoprotein ns1: consequences of interaction with antibody. J Gen Virol 71(Pt 3):593–599 (1990).PubMedCrossRefGoogle Scholar
  28. 28.
    M.D. Co, M. Terajima, J. Cruz, F.A. Ennis and A.L. Rothman. Human cytotoxic t lymphocyte responses to live attenuated 17d yellow fever vaccine: identification of hla-b35-restricted ctl epitopes on nonstructural proteins ns1, ns2b, ns3, and the structural proteine. Virology 293(1):151–163 (2002).PubMedCrossRefGoogle Scholar
  29. 29.
    R.G. van der Most, L.E. Harrington, V. Giuggio, P.L. Mahar and R. Ahmed. Yellow fever virus 17d envelope and ns3 proteins are major targets of the antiviral t cell response in mice. Virology 296(1):117–124 (2002).PubMedCrossRefGoogle Scholar
  30. 30.
    B. Beutler. Inferences, questions and possibilities in toll-like receptor signalling. Nature 430(6996):257–263 (2004).PubMedCrossRefGoogle Scholar
  31. 31.
    A. Iwasaki and R. Medzhitov, Toll-like receptor control of the adaptive immune responses. Nat Immunol 5(10):987–995 (2004).PubMedCrossRefGoogle Scholar
  32. 32.
    K. Takeda, T. Kaisho and S. Akira. Toll-like receptors. Annu Rev Immunol 21:335–376 (2003).PubMedCrossRefGoogle Scholar
  33. 33.
    T. Kawai and S. Akira. Pathogen recognition with toll-like receptors. Curr Opin Immunol 17(4):338–344 (2005).PubMedCrossRefGoogle Scholar
  34. 34.
    R.N. Germain. An innately interesting decade of research in immunology. Nat Med 10(12):1307–1320 (2004).PubMedCrossRefGoogle Scholar
  35. 35.
    K. Shortman and Y.J. Liu. Mouse and human dendritic cell subtypes. Nat Rev Immunol 2(3):151–161 (2002).PubMedCrossRefGoogle Scholar
  36. 36.
    B. Pulendran. Variegation of the immune response with dendritic cells and pathogen recognition receptors. J Immunol 174(5):2457–2465 (2005).PubMedGoogle Scholar
  37. 37.
    A. Poltorak, X. He, I. Smirnova, M.Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, M. Freudenberg, P. Ricciardi-Castagnoli, B. Layton and B. Beutler. Defective lps signaling in c3h/hej and c57bl/10sccr mice: mutations in tlr4 gene. Science 282(5396):2085–2088 (1998).PubMedCrossRefGoogle Scholar
  38. 38.
    O. Takeuchi, K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda and S. Akira. Differential roles of tlr2 and tlr4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11(4):443–451 (1999).PubMedCrossRefGoogle Scholar
  39. 39.
    C. Werts, R.I. Tapping, J.C. Mathison, T.H. Chuang, V. Kravchenko, I. Saint Girons, D.A. Haake, P.J. Godowski, F. Hayashi, A. Ozinsky, D.M. Underhill, C.J. Kirschning, H. Wagner, A. Aderem, P.S. Tobias and R.J. Ulevitch. Leptospiral lipopolysaccharide activates cells through a tlr2-dependent mechanism. Nat Immunol 2(4):346–352 (2001).PubMedCrossRefGoogle Scholar
  40. 40.
    M. Hirschfeld, J.J. Weis, V. Toshchakov, C.A. Salkowski, M.J. Cody, D.C. Ward, N. Qureshi, S.M. Michalek and S.N. Vogel. Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immunol 69(3):1477–1482 (2001).CrossRefGoogle Scholar
  41. 41.
    H. Hiramine, K. Watanabe, N. Hamada and T. Umemoto. Porphyromonas gingivalis 67-kda fimbriae induced cytokine production and osteoclast differentiation utilizing tlr2. FEMS Microbiol Lett 229(1):49–55 (2003).PubMedCrossRefGoogle Scholar
  42. 42.
    D.M. Underhill, A. Ozinsky, A.M. Hajjar, A. Stevens, C.B. Wilson, M. Bassetti and A. Aderem. The toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401(6755):811–815 (1999).PubMedCrossRefGoogle Scholar
  43. 43.
    A.M. Krieg. Cpg motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20:709–760 (2002).PubMedCrossRefGoogle Scholar
  44. 44.
    A. Krug, A.R. French, W. Barchet, J.A. Fischer, A. Dzionek, J.T. Pingel, M.M. Orihuela, S. Akira, W.M. Yokoyama and M. Colonna. Tlr9-dependent recognition of mcmv by ipc and dc generates coordinated cytokine responses that activate antiviral nk cell function. Immunity 21(1):107–119 (2004).PubMedCrossRefGoogle Scholar
  45. 45.
    J. Lund, A. Sato, S. Akira, R. Medzhitov and A. Iwasaki. Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 198(3):513–520 (2003).PubMedCrossRefGoogle Scholar
  46. 46.
    F. Takeshita, C.A. Leifer, I. Gursel, K.J. Ishii, S. Takeshita, M. Gursel and D.M. Klinman. Cutting edge: Role of toll-like receptor 9 in cpg DNA-induced activation of human cells. J Immunol 167(7):3555–3558 (2001).PubMedGoogle Scholar
  47. 47.
    S.S. Diebold, T. Kaisho, H. Hemmi, S. Akira and C. Reis e Sousa. Innate antiviral responses by means of tlr7-mediated recognition of single-stranded rna. Science 303(5663):1529–1531 (2004).PubMedCrossRefGoogle Scholar
  48. 48.
    F. Heil, H. Hemmi, H. Hochrein, F. Ampenberger, C. Kirschning, S. Akira, G. Lipford, H. Wagner and S. Bauer. Species-specific recognition of single-stranded rna via toll-like receptor 7 and 8. Science 303(5663):1526–1529 (2004).PubMedCrossRefGoogle Scholar
  49. 49.
    J.M. Lund, L. Alexopoulou, A. Sato, M. Karow, N.C. Adams, N.W. Gale, A. Iwasaki and R.A. Flavell. Recognition of single-stranded rna viruses by toll-like receptor 7. Proc Natl Acad Sci USA 101(15):5598–5603 (2004).PubMedCrossRefGoogle Scholar
  50. 50.
    L. Alexopoulou, A.C. Holt, R. Medzhitov and R.A. Flavell. Recognition of doublestranded rna and activation of nf-kappab by toll-like receptor 3. Nature 413(6857):732–738 (2001).PubMedCrossRefGoogle Scholar
  51. 51.
    L. Guillot, R. Le Goffic, S. Bloch, N. Escriou, S. Akira, M. Chignard and M. Si-Tahar. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded rna and influenza a virus. J Biol Chem 280(7):5571–5580 (2005).PubMedCrossRefGoogle Scholar
  52. 52.
    K. Tabeta, P. Georgel, E. Janssen, X. Du, K. Hoebe, K. Crozat, S. Mudd, L. Shamel, S. Sovath, J. Goode, L. Alexopoulou, R.A. Flavell and B. Beutler. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci USA 101(10):3516–3521 (2004).PubMedCrossRefGoogle Scholar
  53. 53.
    S. Brandler, N. Brown, T.H. Ermak, F. Mitchell, M. Parsons, Z. Zhang, J. Lang, T.P. Monath and F. Guirakhoo. Replication of chimeric yellow fever virus-dengue serotype 1–4 virus vaccine strains in dendritic and hepatic cells. Am J Trop Med Hyg 72(1):74–81 (2005).PubMedGoogle Scholar
  54. 54.
    S.J. Wu, G. Grouard-Vogel, W. Sun, J.R. Mascola, E. Brachtel, R. Putvatana, M.K. Louder, L. Filgueira, M.A. Marovich, H.K. Wong, A. Blauvelt, G.S. Murphy, M.L. Robb, B.L. Innes, D.L. Birx, C.G. Hayes and S.S. Frankel. Human skin langerhans cells are targets of dengue virus infection. Nat Med 6(7):816–820 (2000).PubMedCrossRefGoogle Scholar
  55. 55.
    L.J. Ho, J.J. Wang, M.F. Shaio, C.L. Kao, D.M. Chang, S.W. Han and J.H. Lai. Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. J Immunol 166(3):1499–1506 (2001).PubMedGoogle Scholar
  56. 56.
    S.N. Byrne, G.M. Halliday, L.J. Johnston and N.J. King. Interleukin-1beta but not tumor necrosis factor is involved in west nile virus-induced langerhans cell migration from the skin in c57bl/6 mice. J Invest Dermatol 117(3):702–709 (2001).PubMedCrossRefGoogle Scholar
  57. 57.
    V.B. Pisarev, E.O. Shishkina, V.F. Larichev and N.V. Grigor’eva. Morphofunctional characteristics of antigen-presenting cells in lymph node in mice with experimental west nile fever. Bull Exp Biol Med 135(3):293–295 (2003).PubMedCrossRefGoogle Scholar
  58. 58.
    L.J. Johnston, G.M. Halliday and N.J. King. Langerhans cells migrate to local lymph nodes following cutaneous infection with an arbovirus. J Invest Dermatol 114(3):560–568 (2000).PubMedCrossRefGoogle Scholar
  59. 59.
    T. Querec, S. Bennouna, S. Alkan, Y. Laouar, K. Gorden, R. Flavell, S. Akira, R. Ahmed and B. Pulendran. Yellow fever vaccine yf-17d activates multiple dendritic cell subsets via tlr2, 7, 8, and 9 to stimulate polyvalent immunity. J Exp Med 203(2):413–424 (2006).PubMedCrossRefGoogle Scholar
  60. 60.
    G. Barba-Spaeth, R.S. Longman, M.L. Albert and C.M. Rice. Live attenuated yellow fever 17d infects human dcs and allows for presentation of endogenous and recombinant t cell epitopes. J Exp Med 202(9):1179–1184 (Epub 2005 Oct 1131) (2005).PubMedCrossRefGoogle Scholar
  61. 61.
    M. Lobigs, A. Mullbacher and M. Regner. Mhc class i up-regulation by flaviviruses: immune interaction with unknown advantage to host or pathogen. Immunol Cell Biol 81(3):217–223 (2003).PubMedCrossRefGoogle Scholar
  62. 62.
    F. Momburg, A. Mullbacher and M. Lobigs. Modulation of transporter associated with antigen processing (tap)-mediated peptide import into the endoplasmic reticulum by flavivirus infection. J Virol 75(12):5663–5671 (2001).PubMedCrossRefGoogle Scholar
  63. 63.
    A. Mullbacher and M. Lobigs. Up-regulation of mhc class i by flavivirus-induced peptide translocation into the endoplasmic reticulum. Immunity 3(2):207–214 (1995).PubMedCrossRefGoogle Scholar
  64. 64.
    M.F. Roelofs, L.A. Joosten, S. Abdollahi-Roodsaz, A.W. Van Lieshout, T. Sprong, F.H. van den Hoogen, W.B. Van Den Berg and T.R. Radstake. The expression of toll-like receptors 3 and 7 in rheumatoid arthritis synovium is increased and costimulation of toll-like receptors 3, 4, and 7/8 results in synergistic cytokine production by dendritic cells. Arthr Rheum. 52(8):2313–2322 (2005).CrossRefGoogle Scholar
  65. 65.
    G. Napolitani, A. Rinaldi, F. Bertoni, F. Sallusto and A. Lanzavecchia. Selected tolllike receptor agonist combinations synergistically trigger a t helper type 1-polarizing program in dendritic cells. Nat Immunol 6(8):769–776 (2005).PubMedCrossRefGoogle Scholar
  66. 66.
    B. Pulendran, P. Kumar, C.W. Cutler, M. Mohamadzadeh, T. Van Dyke and J. Banchereau. Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. J Immunol 167(9):5067–5076 (2001).PubMedGoogle Scholar
  67. 67.
    S. Dillon, A. Agrawal, T. Van Dyke, G. Landreth, L. McCauley, A. Koh, C. Maliszewski, S. Akira and B. Pulendran. A toll-like receptor 2 ligand stimulates th2 responses in vivo, via induction of extracellular signal-regulated kinase mitogenactivated protein kinase and c-fos in dendritic cells. J Immunol 172(8):4733–4743 (2004).PubMedGoogle Scholar
  68. 68.
    M.G. Netea, R. Sutmuller, C. Hermann, C.A. Van der Graaf, J.W. Van der Meer, J.H. van Krieken, T. Hartung, G. Adema and B.J. Kullberg. Toll-like receptor 2 suppresses immunity against candida albicans through induction of il-10 and regulatory t cells. J Immunol 172(6):3712–3718 (2004).PubMedGoogle Scholar
  69. 69.
    A. Sing, D. Rost, N. Tvardovskaia, A. Roggenkamp, A. Wiedemann, C.J. Kirschning, M. Aepfelbacher and J. Heesemann. Yersinia v-antigen exploits toll-like receptor 2 and cd14 for interleukin 10-mediated immunosuppression. J Exp Med 196(8):1017–1024 (2002).PubMedCrossRefGoogle Scholar
  70. 70.
    V. Redecke, H. Hacker, S.K. Datta, A. Fermin, P.M. Pitha, D.H. Broide and E. Raz. Cutting edge: activation of toll-like receptor 2 induces a th2 immune response and promotes experimental asthma. J Immunol 172(5):2739–2743 (2004).PubMedGoogle Scholar
  71. 71.
    S. Agrawal, A. Agrawal, B. Doughty, A. Gerwitz, J. Blenis, T. Van Dyke and B. Pulendran. Cutting edge: different toll-like receptor agonists instruct dendritic cells to induce distinct th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-fos. J Immunol 171(10):4984–4989 (2003).PubMedGoogle Scholar
  72. 72.
    H. Kato, S. Sato, M. Yoneyama, M. Yamamoto, S. Uematsu, K. Matsui, T. Tsujimura, K. Takeda, T. Fujita, O. Takeuchi and S. Akira. Cell type-specific involvement of rig-i in antiviral response. Immunity 23(1):19–28 (2005).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Troy D. Querec
    • 1
  • Bali Pulendran
    • 1
  1. 1.Department of Pathology and Emory Vaccine CenterAtlantaUSA

Personalised recommendations