Advertisement

Shaping Naive and Memory Cd8+ T Cell Responses in Pathogen Infections Through Antigen Presentation

  • Gabrielle T. Belz
  • Nicholas S. Wilson
  • Fiona Kupresanin
  • Adele M. Mount
  • Christopher M. Smith
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 590)

Abstract

The phenotypic and functional studies carried out during recent years have highlighted the enormous heterogeneity among dendritic cells. These specialized cells possess a variety of features that make them highly efficient agents for the detection of pathogens and induction of immune responses. Unraveling how the phenotypic, molecular, and functional signatures of dendritic cells regulate the decision-making process during an immune response has been the focus of intense research in recent years. The advances in our understanding have implications for the development of vaccine strategies that are targeted to individual subpopulations of dendritic cells.

Keywords

Dendritic Cell Dendritic Cell Subset Secondary Lymphoid Tissue Dendritic Cell Population Migratory Dendritic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. 1.
    J. Banchereau and R.M. Steinman. Dendritic cells and the control of immunity. Nature 392:245–252 (1998).PubMedCrossRefGoogle Scholar
  2. 2.
    L. Wu, A. D’Amico, H. Hochrein, M. O’Keeffe, K. Shortman and K. Lucas. Development of thymic and splenic dendritic cell populations from different hemopoietic precursors. Blood 98:3376–3382 (2001).PubMedCrossRefGoogle Scholar
  3. 3.
    M.G. Manz, D. Traver, T. Miyamoto, I.L. Weissman and K. Akashi. Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood 97:3333–3341 (2001).PubMedCrossRefGoogle Scholar
  4. 4.
    G. Moron, P. Rueda, I. Casal and C. Leclerc. CD8aCD11b+ dendritic cells present exogenous virus-like particles to CD8+ T cells and subsequently express CD8aand CD205 molecules. J Exp Med 195:1233–1245 (2002).PubMedCrossRefGoogle Scholar
  5. 5.
    G. Martinez del Hoyo, P. Martin, C.F. Arias, A.R. Marin and C. Ardavin. CD8a+ dendritic cells originate from the CD8a dendritic cell subset by a maturation process involving CD8a, DEC-205, and CD24 up-regulation. Blood 99:999–1004 (2002).PubMedCrossRefGoogle Scholar
  6. 6.
    E.I. Zuniga, D.B. McGavern, J.L. Pruneda-Paz, C. Teng and M.B. Oldstone. Bone marrow plasmacytoid dendritic cells can differentiate into myeloid dendritic cells upon virus infection. Nat Immunol 5:1227–1234 (2004).PubMedCrossRefGoogle Scholar
  7. 7.
    N.S. Wilson and J.A. Villadangos. Lymphoid organ dendritic cells: beyond the Langerhans cells paradigm. Immunol Cell Biol 82:91–98 (2004).PubMedCrossRefGoogle Scholar
  8. 8.
    G.T. Belz, C.M. Smith, L. Kleinert, P. Reading, A. Brooks, K. Shortman, F.R. Carbone, Heath WR. Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc Natl Acad Sci USA 101:8670–8675 (2004).PubMedCrossRefGoogle Scholar
  9. 9.
    D. Vremec, J. Pooley, H. Hochrein, L. Wu and K. Shortman. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J Immunol 164:2978–2986 (2000).PubMedGoogle Scholar
  10. 10.
    S. Henri, D. Vremec, A. Kamath, J. Waithman, S. Williams, C. Benoist, K. Burnham, S. Saeland, E. Handman, K. Shortman. The dendritic cell populations of mouse lymph nodes. J Immunol 167:741–748 (2001).PubMedGoogle Scholar
  11. 11.
    M. O’Keeffe, H. Hochrein, D. Vremec, I. Caminschi, J.L. Miller, E.M. Anders, L. Wu, M.H. Lahoud, S. Henri, B. Scott, P. Hertzog, L. Tatarczuch, K. Shortman. Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8+ dendritic cells only after microbial stimulus. J Exp Med 196:1307–1319 (2002).PubMedCrossRefGoogle Scholar
  12. 12.
    M. O’Keeffe, H. Hochrein, D. Vremec, B. Scott, P. Hertzog, L. Tatarczuch and K. Shortman. Dendritic cell precursor populations of mouse blood: identification of the murine homologues of human blood plasmacytoid pre-DC2 and CD11c+ DC1 precursors. Blood 101:1453–1459 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    F.P. Siegal, N. Kadowaki, M. Shodell, P.A. Fitzgerald-Bocarsly, K. Shah, S. Ho, S. Antonenko, Y.J. Liu. The nature of the principal type 1 interferon-producing cells in human blood. Science 284:1835–1837 (1999).PubMedCrossRefGoogle Scholar
  14. 14.
    M.N. Fleeton, N. Contractor, F. Leon, J.D. Wetzel, T.S. Dermody and B.L. Kelsall. Peyer’s patch dendritic cells process viral antigen from apoptotic epithelial cells in the intestine of reovirus-infected mice. J Exp Med 200:235–245 (2004).PubMedCrossRefGoogle Scholar
  15. 15.
    J.E. Debrick, P.A. Campbell and U.D. Staerz. Macrophages as accessory cells for class I MHC-restricted immune responses. J Immunol 147:2846–2851 (1991).PubMedGoogle Scholar
  16. 16.
    L.J. Sigal, S. Crotty, R. Andino and K.L. Rock. Cytotoxic T-cell immunity to virusinfected non-haematopoietic cells requires presentation of exogenous antigen. Nature 398:77–80 (1999).PubMedCrossRefGoogle Scholar
  17. 17.
    L.J. Sigal and K.L. Rock. Bone marrow-derived antigen-presenting cells are required for the generation of cytotoxic T lymphocyte responses to viruses and use transporter associated with antigen presentation (TAP)-dependent and-independent pathways of antigen presentation. J Exp Med 192:1143–1150 (2000).PubMedCrossRefGoogle Scholar
  18. 18.
    L.L. Lenz, E.A. Butz and M.J. Bevan. Requirements for bone marrow-derived antigen-presenting cells in priming cytotoxic T cell responses to intracellular pathogens. J Exp Med 192:1135–1142 (2000).PubMedCrossRefGoogle Scholar
  19. 19.
    S. Jung, D. Unutmaz, P. Wong, G. Sano, K. De los Santos, T. Sparwasser, S. Wu, S. Vuthoori, K. Ko. F. Zavala, E.G. Pamer, D.R. Littman and R.A. Lang. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17:211–220 (2002).PubMedCrossRefGoogle Scholar
  20. 20.
    D.J. Zammit, L.S. Cauley, Q.M. Pham and L. Lefrancois. Dendritic cells maximize the memory CD8 T cell response to infection. Immunity 22:561–570 (2005).PubMedCrossRefGoogle Scholar
  21. 21.
    G.T. Belz, G.M. Behrens, C.M. Smith, J.F. Miller, C. Jones, K. Lejon, C.G. Fathman, S.N. Mueller, K. Shortman, F.R. Carbone, and W.R. Heath. The CD8a+ dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J Exp Med 196:1099–1104 (2002).PubMedCrossRefGoogle Scholar
  22. 22.
    J.M. den Haan, S.M. Lehar and M.J. Bevan. CD8+ but not CD8 dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 192:1685–1696 (2000).CrossRefGoogle Scholar
  23. 23.
    S. Hugues, E. Mougneau, W. Ferlin, D. Jeske, P. Hofman, D. Homann, L. Beaudoin, C. Schrike, M. Von Herrath, A. Lehuen, and N. Glaichenhaus. Tolerance to islet antigens and prevention from diabetes induced by limited apoptosis of pancreatic beta cells. Immunity 16:169–181 (2002).PubMedCrossRefGoogle Scholar
  24. 24.
    C.M. Smith, G.T. Belz, N.S. Wilson, J.A. Villadangos, K. Shortman, F.R. Carbone and W.R. Heath. Cutting edge: conventional CD8a+ dendritic cells are preferentially involved in CTL priming after footpad infection with herpes simplex virus-1. J Immunol 170:4437–4440 (2003).PubMedGoogle Scholar
  25. 25.
    G.T. Belz, C.M. Smith, D. Eichner, K. Shortman, G. Karupiah and W.R. Heath. Cutting edge: conventional CD8a+ dendritic cells are generally involved in priming CTL immunity to viruses. J Immunol 172:1996–2000 (2004).PubMedGoogle Scholar
  26. 26.
    R.S. Allan, C.M. Smith, G. Belz, A.L. van Lint, L.M. Wakim, W.R. Heath and F.R. Carbone. Epidermal viral immunity is induced by CD8a+ dendritic cells but not Langerhans cells. Science 301:1925–1928 (2003).PubMedCrossRefGoogle Scholar
  27. 27.
    G.T. Belz, N.S. Wilson, C.M. Smith, A. Mount, F.R. Carbone and W.R. Heath. Bone marrow-derived cells expand memory CD8+ T cells to viral infections of the lung and skin. Eur J Immunol. In press.Google Scholar
  28. 28.
    N. Shastri and F. Gonzalez. Endogenous generation and presentation of the ovalbumin peptide/Kb complex to T cells. J Immunol 150:2724–2736 (1993).PubMedGoogle Scholar
  29. 29.
    P. Borrow, C.F. Evans and M.B. Oldstone. Virus-induced immunosuppression: immune system-mediated destruction of virus-infected dendritic cells results in generalized immune suppression. J Virol 69:1059–1070 (1995).PubMedGoogle Scholar
  30. 30.
    B. Odermatt, M. Eppler, T.P. Leist, H. Hengartner and R.M. Zinkernagel. Virustriggered acquired immunodeficiency by cytotoxic T-cell-dependent destruction of antigen-presenting cells and lymph follicle structure. Proc Natl Acad Sci USA. 88:8252–8256 (1991).PubMedCrossRefGoogle Scholar
  31. 31.
    N.V. Serbina, T.P. Salazar-Mather, C.A. Biron, W.A. Kuziel and E.G. Pamer. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19:59–70 (2003).PubMedCrossRefGoogle Scholar
  32. 32.
    M. Dalod, T.P. Salazar-Mather, L. Malmgaard, C. Lewis, C. Asselin-Paturel, F. Briere, G. Trinchieri and C.A. Biron. Interferon alpha/beta and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression in vivo. J Exp Med 195:517–528 (2002).PubMedCrossRefGoogle Scholar
  33. 33.
    C. Asselin-Paturel, A. Boonstra, M. Dalod, I. Durand, N. Yessaad, C. Dezutter-Dambuyant, A. Vicari, A. O’Garra, C. Biron, F. Briere and G. Trinchieri. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2:1144–1150 (2001).PubMedCrossRefGoogle Scholar
  34. 34.
    G.T. Belz, W.R. Heath and F.R. Carbone. The role of dendritic cell subsets in selection between tolerance and immunity. Immunol Cell Biol 80:463–468 (2002).PubMedCrossRefGoogle Scholar
  35. 35.
    C. Filippi, S. Hugues, J. Cazareth, V. Julia, N. Glaichenhaus and S. Ugolini. CD4+ T cell polarization in mice is modulated by strain-specific major histocompatibility complex-independent differences within dendritic cells. J Exp Med 198:201–209 (2003).PubMedCrossRefGoogle Scholar
  36. 36.
    X. Zhao, E. Deak, K. Soderberg, M. Linehan, D. Spezzano, J. Zhu, D.M. Knipe and A. Iwasaki. Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2. J Exp Med 197:153–162 (2003).PubMedCrossRefGoogle Scholar
  37. 37.
    G.T. Belz, K. Shortman, M.J. Bevan and W.R. Heath. CD8a+ dendritic cells selectively present MHC class I-restricted noncytolytic viral and intracellular bacterial antigens in vivo. J Immunol 175:196–200 (2005).PubMedGoogle Scholar
  38. 38.
    N.V. Serbina, W. Kuziel, R. Flavell, S. Akira, B. Rollins and E.G. Pamer. Sequential MyD88-independent and-dependent activation of innate immune responses to intracellular bacterial infection. Immunity 19:891–901 (2003).PubMedCrossRefGoogle Scholar
  39. 39.
    M.P. Lemos, F. Esquivel, P. Scott and T.M. Laufer. MHC class II expression restricted to CD8alpha+ and CD11b+ dendritic cells is sufficient for control of Leishmania major. J Exp Med 199:725–730 (2004).PubMedCrossRefGoogle Scholar
  40. 40.
    S.R. Crowe, S.J. Turner, S.C. Miller, A.D. Roberts, R.A. Rappolo, P.C. Doherty, K.H. Ely and D.L. Woodland. Differential antigen presentation regulates the changing patterns of CD8+ T cell immunodominance in primary and secondary influenza virus infections. J Exp Med 198:399–410 (2003).PubMedCrossRefGoogle Scholar
  41. 41.
    M.F. Bachmann, A. Gallimore, S. Linkert, V. Cerundolo, A. Lanzavecchia, M. Kopf and A. Viola. Developmental regulation of Lck targeting to the CD8 coreceptor controls signaling in naive and memory T cells. J Exp Med 189:1521–1530 (1999).PubMedCrossRefGoogle Scholar
  42. 42.
    E.M. Bertram, W. Dawicki, B. Sedgmen, J.L. Bramson, D.H. Lynch and T.H. Watts. A switch in costimulation from CD28 to 4-1BB during primary versus secondary CD8 T cell response to influenza in vivo. J Immunol 172:981–988 (2004).PubMedGoogle Scholar
  43. 43.
    W. Dawicki and T.H. Watts. Expression and function of 4-1BB during CD4 versus CD8 T cell responses in vivo. Eur J Immunol 34:743–751 (2004).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Gabrielle T. Belz
    • 1
  • Nicholas S. Wilson
    • 2
  • Fiona Kupresanin
    • 1
  • Adele M. Mount
    • 1
  • Christopher M. Smith
    • 3
  1. 1.Division of ImmunologyThe Walter and Eliza Hall Institute of Medical ResearchMelbourneAustralia
  2. 2.CSL LimitedMelbourneAustralia
  3. 3.Department of PathologyUniversity of CambridgeCambridgeUK

Personalised recommendations