Receptors and Pathways in Innate Antifungal Immunity

The Implication for Tolerance and Immunity to Fungi
  • Teresa ZelanteEmail author
  • Claudia Montagnoli
  • Silvia Bozza
  • Roberta Gaziano
  • Silvia Bellocchio
  • Pierluigi Bonifazi
  • Silvia Moretti
  • Francesca Fallarino
  • Paolo Puccetti
  • Luigina Romani
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 590)


In the last years, the clinical relevance of fungal diseases has gained importance because of an increasing population of immunocompromised hosts, such as patients who have undergone transplants, patients with various types of leukemia, and people infected with HIV. Although some virulence factors are of obvious importance, pathogenicity cannot be considered an inherent characteristic of fungi.1 Fungi seem to have a complex relationship with the vertebrate immune system, mainly due to some prominent features: among these, the ability of dimorphic fungi to exist in different forms and to reversibly switch from one to the other in infection. Although association between morphogenesis and virulence has long been presumed for fungi that are human pathogens2, no molecular data unambiguously establish a role for fungal morphogenesis as a virulence factor. What fungal morphogenesis implicates through antigenic variability, phenotypic switching, and dimorphic transition is the existence of a multitude of recognition and effector mechanisms to oppose fungal infectivity at the different body sites.


Treg Cell Invasive Aspergillosis Chronic Mucocutaneous Candidiasis Chronic Mucocutaneous Candidiasis Tryptophan Catabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10. References

  1. 1.
    L. Romani. Overview of fungal pathogens. In Immunology of infectious diseases, pp. 25–37. Ed. S.H. Kaufmann, A. Sher and R. Ahmed. Washington, DC: ASM Press (2001).Google Scholar
  2. 2.
    N.A. Gow, A.J. Brown and F.C. Odds. Fungal morphogenesis and host invasion. Curr Opin Microbiol 5:366–371 (2002).PubMedCrossRefGoogle Scholar
  3. 3.
    M.C. Lorenz and G.R. Fink. The glyoxylate cycle is required for fungal virulence. Nature 412:83–86 (2001).PubMedCrossRefGoogle Scholar
  4. 4.
    L. Romani, F. Bistoni and P. Puccetti. Fungi, dendritic cells and receptors: a host perspective of fungal virulence. Trends Microbiol 10:508–514 (2002).PubMedCrossRefGoogle Scholar
  5. 5.
    R.A. Calderone. Candida and candidiasis. Washington, DC: ASM Press (2002).Google Scholar
  6. 6.
    K.A. Marr, T. Patterson and D. Denning. Aspergillosis: pathogenesis, clinical manifestations, and therapy. Infect Dis Clin North Am 16:875–894 (2002).PubMedCrossRefGoogle Scholar
  7. 7.
    L. Romani. Immunity to fungal infections. Nat Rev Immunol 4:1–23 (2004).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Akira and K. Takeda. Toll-like receptor signalling. Nat Rev Immunol 4:499–511 (2004).PubMedCrossRefGoogle Scholar
  9. 9.
    L. Romani. The T cell response against fungal infections. Curr Opin Immunol 9:484–490 (1997).PubMedCrossRefGoogle Scholar
  10. 10.
    L. Romani. Innate immunity to fungi: the art of speed and specificity. In Pathogenic fungi: host interactions and emerging strategies for control, pp. 167–214. Ed. G. San-Blas and R.A. Calderone. Norfolk: Caister Academic Press (2004).Google Scholar
  11. 11.
    S.L. Newman. Histoplasma capsulatum: diary of an intracellular survivor. In Fungal pathogenesis, principles and clinical applications, pp. 81–96. Ed. R.A. Calderone and R.L. Cihlar. New York: Marcel Dekker (2002).Google Scholar
  12. 12.
    L.A. Gildea, R.E. Morris and S.L. Newman. Histoplasma capsulatum yeasts are phagocytosed via very late antigen-5, killed, and processed for antigen presentation by human dendritic cells. J Immunol 166:1049–1056 (2001).PubMedGoogle Scholar
  13. 13.
    S. Akira, K. Takeda and T. Kaisho. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680 (2001).PubMedCrossRefGoogle Scholar
  14. 14.
    S. Bellocchio, C. Montagnoli, S. Bozza, R. Gaziano, G. Rossi, S.S. Mambula, A. Vecchi, A. Mantovani, S.M. Levitz and L. Romani. The contribution of the Tolllike/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol 172:3059–3069 (2004).PubMedGoogle Scholar
  15. 15.
    S. Bellocchio, S. Moretti, K. Perruccio, F. Fallarino, S. Bozza, C. Montagnoli, P. Mosci, G.B. Lipford, L. Pitzurra and L. Romani. TLRs govern neutrophil activity in aspergillosis. J Immunol 173:7406–7415 (2004).PubMedGoogle Scholar
  16. 16.
    M.G. Netea, J.W. Van der Meer and B.J. Kullberg. Toll-like receptors as an escape mechanism from the host defense. Trends Microbiol 12:484–488 (2004).PubMedCrossRefGoogle Scholar
  17. 17.
    S.M. Levitz. Interactions of Toll-like receptors with fungi. Microbes Infect 6:1351–1355 (2004).PubMedCrossRefGoogle Scholar
  18. 18.
    K. Shortman and Y.J. Liu. Mouse and human dendritic cell subtypes. Nat Rev Immunol 2:151–161 (2002).PubMedCrossRefGoogle Scholar
  19. 19.
    A. Bacci, C. Montagnoli, K. Perruccio, S. Bozza, R. Gaziano, L. Pitzurra, A. Velardi, C.F. d’Ostiani, J.E. Cutler and L. Romani. Dendritic cells pulsed with fungal RNA induce protective immunity to Candida albicans in hematopoietic transplantation. J Immunol 168:2904–2913 (2002).PubMedGoogle Scholar
  20. 20.
    S. Bozza, R. Gaziano, A. Spreca, A. Bacci, C. Montagnoli, P. di Francesco and L. Romani. Dendritic cells transport conidia and hyphae of Aspergillus fumigatus from the airways to the draining lymph nodes and initiate disparate Th responses to the fungus. J Immunol 168:1362–1371 (2002).PubMedGoogle Scholar
  21. 21.
    S. Bozza, K. Perruccio, C. Montagnoli, R. Gaziano, S. Bellocchio, E. Burchielli, G. Nkwanyuo, L. Pitzurra, A. Velardi and L. Romani. A dendritic cell vaccine against invasive aspergillosis in allogeneic hematopoietic transplantation. Blood 102:3807–3814 (2003).PubMedCrossRefGoogle Scholar
  22. 22.
    U. Grohmann, F. Fallarino and P. Puccetti. Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol 24:242–248 (2003).PubMedCrossRefGoogle Scholar
  23. 23.
    U. Grohmann, C. Orabona, F. Fallarino, C. Vacca, F. Calcinaro, A. Falorni, P. Candeloro, M.L. Belladonna, R. Bianchi, M.C. Fioretti and P. Puccetti. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 3:1097–1101 (2002).PubMedCrossRefGoogle Scholar
  24. 24.
    F. Fallarino, U. Grohmann, K.W. Hwang, C. Orabona, C. Vacca, R. Bianchi, M.L. Belladonna, M.C. Fioretti, M.L. Alegre and P. Puccetti. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4:1206–1212 (2003).PubMedCrossRefGoogle Scholar
  25. 25.
    C. Orabona, U. Grohmann, M.L. Belladonna, F. Fallarino, C. Vacca, R. Bianchi, S. Bozza, C. Volpi, B.L. Salomon, M.C. Fioretti, L. Romani and P.C. Puccetti. CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nat Immunol 5:1134–1142 (2004).PubMedCrossRefGoogle Scholar
  26. 26.
    C. Montagnoli, A. Bacci, S. Bozza, R. Gaziano, P. Mosci, A.H. Sharpe and L. Romani. B7/CD28-dependent CD4+CD25+ regulatory T cells are essential components of the memory-protective immunity to Candida albicans. J Immunol 169:6298–6308 (2002).PubMedGoogle Scholar
  27. 27.
    S. Bozza, F. Fallarino, L. Pitzurra, T. Zelante, C. Montagnoli, S. Bellocchio, P. Mosci, C. Vacca, P. Puccetti and L. Romani. A crucial role for tryptophan catabolism at the host/Candida albicans interface. J Immunol 174:2910–2918 (2005).PubMedGoogle Scholar
  28. 28.
    G.J. Gurtner, R.D. Newberry, S.R. Schloemann, K.G. McDonald and W.F. Stenson. Inhibition of indoleamine 2,3-dioxygenase augments trinitrobenzene sulfonic acid colitis in mice. Gastroenterology 125:1762–1773 (2003).PubMedCrossRefGoogle Scholar
  29. 29.
    Y. Belkaid and B.T. Rouse. Natural regulatory T cells in infectious disease. Nat Immunol 6:353–360 (2005).PubMedCrossRefGoogle Scholar
  30. 30.
    S. Hori, T.L. Carvalho and J. Demengeot. CD25+CD4+ regulatory T cells suppress CD4+ T cell-mediated pulmonary hyperinflammation driven by Pneumocystis carinii in immunodeficient mice. Eur J Immunol 32:1282–1291 (2002).PubMedCrossRefGoogle Scholar
  31. 31.
    C. Montagnoli, F. Fallarino, R. Gaziano, S. Bozza, S. Bellocchio, T. Zelante, W.P. Kurup, L. Pitzurra, P. Puccetti and L. Romani. The plasticity of dendritic cells at the host/fungal interface. J Immunol 204:582–589 (2001).Google Scholar
  32. 32.
    P.L. Fidel Jr. The protective immune response against vaginal candidiasis: lessons learned from clinical studies and animal models. Int Rev Immunol 21:515–548 (2002).PubMedCrossRefGoogle Scholar
  33. 33.
    L.P. Carvalho, O. Bacellar, N. Neves, A.R. de Jesus and E.M. Carvalho. Downregulation of IFN-gamma production in patients with recurrent vaginal candidiasis. J Allergy Clin Immunol 109:102–105 (2002).PubMedCrossRefGoogle Scholar
  34. 34.
    D. Lilic. New perspectives on the immunology of chronic mucocutaneous candidiasis. Curr Opin Infect Dis 15:143–147 (2002).PubMedGoogle Scholar
  35. 35.
    A. Liston, S. Lesage, J. Wilson, L. Peltonen and C.C. Goodnow. Aire regulates negative selection of organ-specific T cells. Nat Immunol 4:350–354 (2003).PubMedCrossRefGoogle Scholar
  36. 36.
    M. Ostroukhova, C. Seguin-Devaux, T.B. Oriss, B. Dixon-McCarthy, L. Yang, B.T. Ameredes, T.E. Corcoran and A. Ray. Tolerance induced by inhaled antigen involves CD4(+) T cells expressing membrane-bound TGF-beta and FOXP3. J Clin Invest 114:28–38 (2004).PubMedCrossRefGoogle Scholar
  37. 37.
    L. Romani. Host immune reactivity and antifungal chemotherapy: the power of being together. J Chemother 13:347–353 (2001).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Teresa Zelante
    • 1
    Email author
  • Claudia Montagnoli
    • 1
  • Silvia Bozza
    • 1
  • Roberta Gaziano
    • 1
  • Silvia Bellocchio
    • 1
  • Pierluigi Bonifazi
    • 1
  • Silvia Moretti
    • 1
  • Francesca Fallarino
    • 1
  • Paolo Puccetti
    • 1
  • Luigina Romani
    • 1
  1. 1.Dept. of Experimental Medicine and Biochemical SciencesUniversity of PerugiaPerugiaItaly

Personalised recommendations